#### P1305

## [5442] - 101 M.Sc. (IMCA) MATHEMATICS MIM - 101 : Real Analysis (2013 Pattern) (Semester - I)

*Time : 3 Hours*/

[Max. Marks :50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- 3) Unless specified,  $\mathbb{R}^n$  is assumed to have usual metric for all  $n \ge 1$ .

**Q1)** a) Prove that a set E is open if and only if its complement is closed. [4]

- b) If X is a metric space and  $E \subseteq X$  then prove that  $\overline{E}$  is closed. [3]
- c) Give an example of an infinite collection of open sets whose intersection need not be open. [3]
- Q2) a) If E is an infinite subset of a compact set K, then prove that E has a limit point in K.[4]
  - b) Prove that if p > 0 then  $\lim_{n \to \infty} \sqrt[n]{p} = 1$ . [3]

c) Find radius of convergence of 
$$\sum_{n=1}^{\infty} n^n z^n$$
. [3]

**Q3)** a) Show that 
$$\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = e.$$
 [4]

- b) Suppose f is a continuous mapping of a compact metric space X in to a metric space Y. Then prove that f(x) is compact. [3]
- c) Let f be defined on [a, b]. If f is differentiable at a point x∈[a, b] then prove that f is continuous at x. [3]

*P.T.O.* 

SEAT No. :

[Total No. of Pages :3

- Q4) a) Suppose f is a real differentiable function on [a,b] and suppose f'(a) < λ < f'(b). Prove that there exists a point x∈(a,b) such that f'(x) = λ.</li>
  - b) Suppose f' is continuous on [a, b] and  $\in > 0$ . Prove that there exists  $\delta > 0$  such that  $\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \epsilon$ , whenever  $0 < |t - x| < \delta$  [3]
  - c) Let f be defined for all real x, and suppose that  $|f(x) f(y)| \le (x y)^2 \forall x, y \in \mathbb{R}$ . Prove that f is constant. [3]

**Q5)** a) Prove that 
$$\int_{\underline{a}}^{b} f d\alpha \leq \int_{a}^{\overline{b}} f d\alpha$$
. [4]

b) If  $f \in \mathbb{R}(\alpha)$  on [a,b] then prove that  $|f| \in \mathbb{R}(\alpha)$  and  $\left| \int_{a}^{b} f d\alpha \right| \leq \int_{a}^{b} |f| d\alpha$ . [3]

c) If 
$$f(x) = x^2$$
 and  $\alpha(x) = x + 5$ , then evaluate  $\int_0^{\infty} f d\alpha$ . [3]

- **Q6)** a) Suppose  $\lim_{n \to \infty} f_n(x) = f(x), (x \in E)$  Put  $M_n = \sup_{x \in E} |f_n(x) f(x)|$ . Then prove that  $f_n \longrightarrow f$  uniformly on E if and only if  $M_n \longrightarrow 0$  as  $n \to \infty$ . [4]
  - b) Prove that  $\{f_n^1(x)\}_{n=1}^{\infty}$  does not converge to f', where  $f_n(x) = \frac{\sin nx}{\sqrt{n}}, x \in \mathbb{R}, n \in \mathbb{N}.$  [3]

c) If 
$$\sum_{n=1}^{\infty} a_n$$
 converges then prove that  $\lim_{n \to \infty} a_n = 0.$  [3]

[5442] - 101

- **Q7)** a) Prove that every compact subset of a metric space is closed. [5]
  - b) If f and g are continuous real functions on [a, b] which are differentiable on (a,b) then prove that there exists a point x∈(a,b) at which [f(b)-f(a)]g'(x)=[g(b)-g(a)]f'(x). [5]
- **Q8)** a) Prove that  $f \in \mathbb{R}(\alpha)$  on [a,b] if and only if for every  $\in > 0$  there exists a partition P such that  $U(p, f, \alpha) L(p, f, \alpha) < \in$ . [5]
  - b) Let  $f_n(x) = n^2 x (1 x^2)^n$ ,  $(0 \le x \le 1, n = 1, 2, 3, ....)$

- i) Prove that  $\lim_{n \to \infty} f_n(x) = 0$ .
- ii) Prove that  $\lim_{n \to \infty} \int_0^1 f_n(x) dx \neq \int_0^1 \left[ \lim_{x \to \infty} f_n(x) \right] dx.$  [5]

#### **P1306**

**SEAT No. :** 

[Total No. of Pages : 3

#### [5442]-102

## M.Sc. (IMCA)

#### **MATHEMATICS**

## MIM - 102: Linear Algebra and Computational Geometry (2013 Pattern) (Semester - I)

Time : 3 Hours]

Instructions to the candidates:

- Answer any five questions out of eight. 1)
- Figures to the right indicate full marks. 2)
- 3) Use of non programmable scientific calculator is allowed.

**Q1**) Attempt each of the following:

- Give an example of a vector space of dimension 3 over  $\mathbb{R}$ . [2] a)
- Prove that a nonempty set W of a vector space V is a subspace of V if b) and only if  $\alpha w_1 + \beta w_2 \in W$ ,  $\forall \alpha, \beta \in \mathbb{R}$  and  $w_1, w_2 \in W$ . [4]
- Does the set S = {(1, 1, 2), (1, 2, 5), (5, 3, 4)} form a basis for  $\mathbb{R}^3$ ? c) Justify. [4]
- **Q2)** Attempt each of the following:
  - a) Define an inner product space V. [2]
  - Let V be a n-dimensional vector space ( $n \ge 1$ ). Prove that any linearly b) independent subset of V with n elements is a basis of V. [4]
  - Show that for the vectors  $u = (u_1, u_2)$  and  $v = (v_1, v_2)$  in  $\mathbb{R}^2$ , c)

 $\langle u, v \rangle = 5 u_1 v_1 - u_1 v_2 - u_2 v_1 + 10 u_2 v_2$  defines an inner product on  $\mathbb{R}^2$ . [4]

*P.T.O.* 

[Max. Marks : 50

- **Q3)** Attempt each of the following:
  - a) State Cayley Hamilton Theorem for matrices. [2]
  - b) Let  $u = (\cos t, \sin t, 0)$ ,  $v = (-\sin t, \cos t, 0)$ , w = (0, 0, 1) in  $\mathbb{R}^3$ . Show that the set of vectors  $B = \{u, v, w\}$  is orthonormal basis for Euclidean inner product space  $\mathbb{R}^3$  for any real *t*. [4]
  - c) Let transformation T :  $\mathbb{R}^2 \to \mathbb{R}^3$  be defined as T(x, y) = (2x, x + y, x - y). Show that T is a linear transformation. [4]
- Q4) Attempt each of the following:
  - a) Let  $T : \mathbb{R}^2 \to \mathbb{R}^3$  be a linear transformation defined by  $T(x_1, x_2) = (x_2, -5x_1 + 13x_2, -7x_1 + 16x_2)$ . Find the matrix  $[T]_B^{B'}$ , where  $B = \{u_1, u_2\}$ and  $B' = \{v_1, v_2, v_3\}$  are bases of  $\mathbb{R}^2$  and  $\mathbb{R}^3$  respectively where  $u_1 = (3, 1), u_2 = (5, 2), v_1 = (1, 0, -1), v_2 = (-1, 2, 2)$  and  $v_3 = (0, 1, 2)$ .[5]
  - b) State and prove Cauchy Schwarz Inequality. [5]
- **Q5)** Attempt each of the following:
  - a) Write a short note on orthographic projection. [5]
  - b) Write an algorithm to generate uniformly spaced n points on an arc of the standard ellipse in the first quadrant. [5]
- **Q6)** Attempt each of the following:
  - a) The circle with radius 2 units is transformed by using transformation

matrix  $[T] = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$ . Obtain the area of transformed figure. [2]

b) Show that the transformation matrix for rotation about the origin through

an angle '
$$\theta$$
' is  $[T] = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ . [4]

c) Reflect the line segment between the points A  $\begin{bmatrix} -3, & 3 \end{bmatrix}$  and B  $\begin{bmatrix} 1, & 4 \end{bmatrix}$  through the line x - 4y + 8 = 0. Write the concatenated transformation matrix. [4]

- *Q7*) Attempt each of the following:
  - a) State any two properties of Bezier curve. [2]
  - b) Find the transformation matrix obtained by reflecting the pyramid OABC with O [0, 0, 0], A [1, 0, 0], B [0, 1, 0], C [0, 0, 1] in the plane z = -5.[4]
  - c) Obtain the transformation matrix for the trimetric projection formed by rotation about the y-axis through 30°, followed by rotation about the x-axis through 35°, followed by orthographic projection on z = 0 plane. Determine the principal foreshortening factors. [4]
- **Q8)** Attempt each of the following:
  - a) State any two properties of an affine transformation. [2]
  - b) Find the parametric equation of the Bezier curve for the control points  $B_0[2, 1], B_1[4, 4], B_2[5, 3]$  and  $B_3[5, 1]$ . Find the position vector of the point on the curve corresponding to parameter value t = 0.5. [4]
  - c) Generate uniformly spaced 8 points on the circle  $(x-3)^2 + (y+1)^2 = 16$ . [4]



**P1307** 

## [5442] - 103 M.Sc. (IMCA) MATHEMATICS MIM 103 : Discrete Mathematics (2013 Pattern) (Semester - I)

Time : 3 Hours] Instructions to the candidates: 1) Attempt any **FIVE** questions. 2) Figures to the right indicate full marks. Use of scientific calculator is not allowed. 3) Give the converse, inverse and contrapositive of "The home team wins *01*) a) whenever it is raining". [3]

- How many strings of three decimal digits b) [3]
  - do not contain the same digit three times? i)
  - ii) begin with an odd digit?
  - have exactly two digits that are 4's? iii)
- c) Show that if *n* is a nonnegative integer, then [4]
  - i)
  - ii)
- Give a proof by contradiction of the theorem, "If (3n + 2) is odd then n *Q2*) a) is odd ". [4]
  - Show that if five integers are selected from the first 8 positive integers, b) there must be a pair of these integers, with a sum equal to 9. [3]
  - c) How many functions are there from the set  $\{1, 2, ..., n\}$ , where n is a positive integer to the set  $\{0, 1\}$ ? [3]
- Prove that  $K_5$  is not a planar graph. *Q3*) a) [5] Draw the arborescence of the following expression and write it in polish **b**) notation : [5]

$$\frac{\left(2a-3b\right)^2}{c\left(3d+e^4\right)}$$

*P.T.O.* 

[Total No. of Pages : 3

**SEAT No. :** 

[Max. Marks : 50

 ${}^{2n}C_{n} = \sum_{k=0}^{n} {\binom{n}{C_{k}}}^{2}$  $\sum_{k=0}^{n} {(-1)}^{k} {}^{n}C_{k} = 0$ 

- Q4) a) Prove that every tree with *n* vertices has (n-1) edges. [5]
  - b) Determine the smallest positive integer n so that the complete graph  $K_n$  has at least 55 edges. [3]

[2]

[4]

- c) State the following rules of inference :
  - i) Modus ponens
  - ii) Law of syllogism.
- *Q5*) a) Let G be a connected graph and S a cut-set of G. Prove that S contains at least one branch of every spanning tree of G. [3]
  - b) Use Kruskal's algorithm to find a minimum spanning tree for the weighted graph. [4]



- c) Let *T* be a binary tree with *n* vertices. Show that *T* has  $\frac{n+1}{2}$  pendant vertices. [3]
- Q6) a) Define the following terms :
  - i) Bipartite graph
  - ii) Regular graph
  - iii) Center of a tree
  - iv) Diameter of a tree
  - b) Prove that in a graph G, there are always an even number of vertices of odd degree. [3]
  - c) Draw all possible non-isomorphic trees on 6 vertices. [3]
- (*Q7*) a) Find the adjacency matrix and incidence matrix for the graph. [2]



[5442]-103

- b) Prove that the number of vertices in a self-complementary graph is of the form 4k or 4k + 1 where k is a positive integer. [4]
- c) Find the minimum height and maximum height of a binary tree with n = 15 vertices. Draw such trees. [4]



In the above network , fill the block with suitable numbers so that the second set of numbers determine a flow in the network. [4]

- b) Draw a suitable digraph with 5 vertices in which each vertex has out degree 2. [2]
- c) Let *T* be a tree with *n* vertices,  $n \ge 2$ . Show that *T* has at least 2 pendant vertices. [4]

\*\*\*

SEAT No. :

[Total No. of Pages : 3

## P1308

[5442]-104

#### M.Sc.

## INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATIONS MIM - 104 : C Programming (2013 Pattern) (Semester - I)

| Timo<br>Insti | e : 3<br>ructi<br>1)<br>2)<br>3) | Hours] [Max. Marks<br>ons to the candidates:<br>Attempt any five questions out of eight.<br>All questions carry equal marks.<br>Figures to the right indicate full marks. | : 50                 |
|---------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Q1)           | Att                              | tempt each of the following.                                                                                                                                              |                      |
|               | a)                               | Explain do-while loop with example.                                                                                                                                       | [4]                  |
|               | b)                               | Explain the use of getchar() getch() and getche() with suitable example                                                                                                   | e. <b>[4]</b>        |
|               | c)                               | Write the different features of 'C' language.                                                                                                                             | [2]                  |
| Q2)           | Att                              | tempt each of the following:                                                                                                                                              |                      |
|               | a)                               | Explain ftell (), rewind () and fseek () functions with example.                                                                                                          | [4]                  |
|               | b)                               | Write a program to find the factorial value of any number entered thro<br>the keyboard.                                                                                   | ough<br>[ <b>4</b> ] |
|               | c)                               | What will be the output of the following program.                                                                                                                         | [2]                  |
|               |                                  | main ()                                                                                                                                                                   |                      |
|               |                                  | {                                                                                                                                                                         |                      |
|               |                                  | intx = 1;                                                                                                                                                                 |                      |
|               |                                  | while $(x==1)$                                                                                                                                                            |                      |
|               |                                  | {                                                                                                                                                                         |                      |
|               |                                  | x = x - 1;                                                                                                                                                                |                      |
|               |                                  | Print f ("\n%d",x);                                                                                                                                                       |                      |
|               |                                  | }                                                                                                                                                                         |                      |
|               |                                  | }                                                                                                                                                                         |                      |

*Q3)* Attempt each of the following.

| a) | What is pointer? What are the different operations that can | be performed |
|----|-------------------------------------------------------------|--------------|
|    | on pointer?                                                 | [4]          |

b) Explain the different data types used in C language with example. [4]

[2]

- c) Define the following terms with example.
  - i) Keyword
  - ii) Variable
- Q4) Attempt each of the following:-

| a) | Explain switch control statement with example.      | [4] |
|----|-----------------------------------------------------|-----|
| b) | Explain the difference between structure and union. | [4] |
| c) | Find out the output of the following C code.        | [2] |
|    | main()                                              |     |
|    | {                                                   |     |
|    | int k, num = 30;                                    |     |
|    | k = (num > 5? (num < = 10? 100:200) : 500);         |     |
|    | Print f ("\n % d", num);                            |     |
|    | }                                                   |     |
|    |                                                     |     |

Q5) Attempt each of the following.

| a) | Write a note on bitwise operators.                         | [4] |
|----|------------------------------------------------------------|-----|
| b) | What is an Array? Explain two dimensional array in detail. | [4] |
| c) | Write the output of following C code.                      | [2] |
|    | Main()                                                     |     |
|    | {                                                          |     |
|    | int $i = 4, z = 12;$                                       |     |
|    | if $(i = 5 \&\& z > 5)$                                    |     |
|    | Print f ("\n C Language");                                 |     |
|    | else                                                       |     |
|    | print f ("\n any other language");                         |     |
|    | }                                                          |     |
|    |                                                            |     |

[5442]-104

*Q6*) Attempt each of the following.

{

- a) Write the different file opening modes in detail. [4]
- b) Explain 'for' loop in detail with example. [4]
- c) Write the output of following C code. [2] Main ()
  - int x = 4, y, z; y = --x; z = x - -;Print f("\n%d%d%d",x,y,z);
- Q7) Attempt each of the following:-

| a)  | Write a        | short n | ote on o | dynamic | memor | y allo | cation. | [5] |
|-----|----------------|---------|----------|---------|-------|--------|---------|-----|
| • ` | <b>TTT 1</b> 1 | . 1     | 1.00     |         |       |        |         | _   |

b) Write down the different advantages of functions. [5]

#### **Q8)** Attempt each of the following:-

- a) Write a 'C' program to check for the leap year using conditional operators. [5]
- b) Write a 'C' program to create a function power (a,b), to calculate the value of a raised to b. [5]



SEAT No. :

[Total No. of Pages : 2

P1309

## [5442]-105

#### M.Sc.

## INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATIONS

## MIM - 105 : Elements of Information Technology (2013 Pattern) (Semester - I)

| Time :       | 3 Hours]                                                    | [Max. Marks : 50 |
|--------------|-------------------------------------------------------------|------------------|
| Instru<br>1  | tions to the candidates:<br>Attempt any five questions.     |                  |
| 2)           | Figures to the right indicate full marks.                   |                  |
| <i>Q1)</i> a | ) What is the need of cache memory in CPU?                  | [2]              |
| ŀ            | ) What is unicode? What are the advantages of use of un     | nicode? [4]      |
| С            | ) Explain the difference between PROM and EPROM.            | [4]              |
|              |                                                             |                  |
| <i>Q2)</i> a | ) Solve $(110\ 110)_2 = (?)_{10}$ .                         | [2]              |
| t            | ) Explain the different characteristics of computer.        | [4]              |
| С            | ) Write a note on EBCDIC code.                              | [4]              |
|              |                                                             |                  |
| <i>Q3)</i> a | ) Solve $(AC2)_{16} = (?)_8$ .                              | [2]              |
| b            | ) Explain the working of CDROM.                             | [4]              |
| С            | ) Write a note on Central Processing Unit (CPU).            | [4]              |
|              |                                                             |                  |
| <b>Q4)</b> a | ) List the different types of number systems.               | [2]              |
| t            | ) Explain the working of RISC processor.                    | [4]              |
| С            | ) Write a note on OCR input method.                         | [4]              |
|              |                                                             |                  |
| <b>Q5)</b> a | ) List the different addressing modes available in instruct | tion set. [2]    |
| b            | ) Write a note on Plotter.                                  | [4]              |
| С            | ) Write a note on VDU.                                      | [4]              |
|              |                                                             |                  |

*P.T.O.* 

| Q6) | a) | What is a flash memory? Write any two advantages of flash memory. | [2] |
|-----|----|-------------------------------------------------------------------|-----|
|     | b) | Explain the working of magnetic hard disk.                        | [4] |
|     | c) | Write a note on 'Instruction set'.                                | [4] |
| Q7) | a) | Write a note on memory organization.                              | [5] |
|     | b) | Write a note on serial Access memory.                             | [5] |
| Q8) | a) | Explain the use of any four registers used in CPU.                | [5] |
|     | b) | Write a note on 'Printers'.                                       | [5] |



#### P1310

## [5442]-201 M.Sc. (IMCA) MATHEMATICS MIM - 201 : Complex Analysis (2013 Pattern) (Semester - II)

Time : 3 Hours] Instructions to the candidates: [Max. Marks : 50

[Total No. of Pages : 2

**SEAT No. :** 

1) Attempt any five questions.

- 2) Figures to the right indicate full marks.
- **Q1)** a) If f'(z)=0 everywhere in a domain D then show that f(z) must be constant throughout D. [5]
  - b) Find all the roots of  $(-16)^{\frac{1}{4}}$  in rectangular coordinates. Also point out which is the principal root. [3]
  - c) Sketch the closure of the set: [2]  $|\operatorname{Re} z| < |z|$ .

Q2) a) Prove that a composition of continuous functions is itself continuous.[5]

b) Determine where f'(z) exists and find its value when  $f(z) = x^2 + iy^2$ . [3]

- c) Show that  $|\exp(z^2)| \le \exp(|z|^2)$ . [2]
- **Q3)** a) Suppose that f(z) = u(x, y) + iv(x, y), where z = x + iy and  $z_0 = x_0 + iy_0$ ,  $w_0 = u_0 + iv_0$ . Prove that  $\lim_{z \to z_0} f(z) w_0$  if and only if  $\lim_{(x,y) \to (x_0, y_0)} u(x, y) = u_0$  and  $\lim_{(x,y) \to (x_0, y_0)} v(x, y) = v_0$ . [5]
  - b) Show that the set of values of  $\log(i^2)$  is not the same as the set of values of  $2 \log i$ . [3]

c) Show that 
$$\lim_{z\to 0} \left(\frac{z}{\overline{z}}\right)$$
 does not exist. [2]  
*PT.O.*

Q4) a) State and prove Cauchy's residue theorem. [5]

b) Prove that  $\sin z = 0$  if and only if  $z = n\pi (n = 0, \pm 1, \pm 2, \dots)$ . [3]

c) Evaluate 
$$\int_{1}^{2} \left(\frac{1}{t}-i\right)^{2} dt$$
. [2]

**Q5)** a) Let  $C_R$  denote the upper half of the circle |z| = R(R > 2), taken in the counter clockwise direction. Show that [5]

$$\left| \int_{C_{R}} \frac{2z^{2} - 1}{z^{4} + 5z^{2} + 4} dz \right| \leq \frac{\pi R (2R^{2} + 1)}{(R^{2} - 1)(R^{2} - 4)}$$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}} \left( |z-i| < \sqrt{2} \right)$$

- c) Define an essential singular point. Also give a suitable example of essential singular point of a function. [2]
- **Q6)** a) Let f be analytic everywhere inside and on a simple closed contour C, taken in the positive sense. If  $z_0$  is any point interior to C, then prove that

$$f(z_0) = \frac{1}{2\pi i} \int_c \frac{f(z) dz}{z - z_0}.$$
 [5]

- b) Evaluate  $\int_{C} \frac{dz}{z(z-2)^4}$ , where C is the positively oriented circle |z-2|=1.[3]
- c) State Cauchy-Goursat theorem. [2]

**Q7**) a) Evaluate 
$$\int_{0}^{\infty} \frac{x^2}{x^6 + 1} dx$$
. [5]

- b) State and prove the fundamental theorem of algebra. [5]
- **Q8**) a) State and prove Taylor's theorem. [5]
  - b) State and prove Liouville's theorem. [5]

 $\mathfrak{RRR}$ 

[5442]-201

## P1311

SEAT No. :

[Total No. of Pages : 2

## [5442]-202 M.Sc.(IMCA) MATHEMATICS MIM - 202 : Algebra - I (2013 Pattern) (Semester - II)

*Time : 3 Hours]* 

[Max. Marks : 50

Instructions to the candidates:

- 1) Attempt any FIVE questions.
- 2) Figures to the right indicate full marks.

| Q1) | a) | Show that the set $G=\{5, 15, 25, 35\}$ is a group under multiplicat                                                                                                           | tion                |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|     |    | modulo 40. What is the identity element of this group?                                                                                                                         | [4]                 |
|     | b) | Prove that every subgroup of a cyclic group is cyclic.                                                                                                                         | [4]                 |
|     | c) | Show that a group G is abelian iff $(a \ b)^{-1} = a^{-1} \ b^{-1}, \ \forall a, b \in G$ .                                                                                    | [2]                 |
| Q2) | a) | Let G be a group and let 'a' be an element of G of order <i>n</i> . For e integer k between 1 and n, show that $O(a^k) = O(a^{n-k})$ .                                         | ach<br>[2]          |
|     | b) | Find all subgroups of the group of quaternious $Q_8$ . How many of the are normal subgroups of $Q_8$ ?                                                                         | iese<br>[4]         |
|     | c) | Let $\phi : (\mathbb{Z}^+) \to (\mathbb{Z}_n, t_n)$ be defined by $\phi(a) = \overline{a}, \forall a \in \mathbb{Z}$ . Show that a homomorphism. Find ker $\phi$ .             | φ is<br>[4]         |
| Q3) | a) | Write the following permutation on $S_8$ as a product of disjoint cycle                                                                                                        | s :                 |
|     |    | $\sigma = (1 \ 3) \ (4 \ 6 \ 7) \ (3 \ 1) \ (2 \ 7 \ 1 \ 5 \ 8).$                                                                                                              | [2]                 |
|     | b) | Let G be a group. Let H, K be normal subgroups of G such that $H \cap K = \{e\}$ ; e, the identify element of G. Show that $h \ k = k \ h$ , $\forall h \in \forall k \in K$ . | ≡H,<br>[ <b>4</b> ] |
|     | c) | Let G be a group. Let $\mathbb{Z}(G)$ be the centre of G. Show that if $\frac{G}{7(G)}$                                                                                        | ī is                |

c) Let G be a group. Let  $\mathbb{Z}(G)$  be the centre of G. Show that if  $\overline{Z(G)}$  is cyclic then G is abelian. [4]

*P.T.O.* 

- **Q4)** a) If  $O(G) = p^2$ , where p is a prime, prove that G is an abelian group. [4]
  - b) Let  $G = \langle a \rangle$  be a cyclic group of order 10. Find all left cosets of H is G where H is the subgroup of G generated by  $a^2$ . [2]
  - c) Prove that a group of order 42 cannot be simple. [4]
- **Q5)** a) State and prove Lagrange's theorem. [4]
  - b) Show, in usual notation, that  $A_n$  is a normal subgroup of  $S_n$ . [4]
  - c) Let R be a ring such that  $a^2 = a$  for all a in R. Show that R is a commutative ring. [2]
- **Q6)** a) Show that  $(\mathbb{Z}_p, +_p, \times_p)$  is a field if and only if p is a prime number. [4]
  - b) Is the element  $7-5\sqrt{2}$  a unit in the ring  $\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\right\}$ ? Justify your answer. [4]
  - c) If an ideal I of a ring R with unity contains a unit of the ring R, prove that I=R. [2]
- Q7) a) Let R be a commutative ring with unity. Let I be an ideal of R. Prove that R/I is an integral domain if and only if I is a prime ideal in R. [4]
  - b) Prove or disprove :  $\frac{\mathbb{Z}_3[x]}{\langle x^2 + 1 \rangle}$  is a field; where  $\langle x^2 + 1 \rangle$  is the ideal generated
    - by the polynomial  $x^{2+1}$  over  $\mathbb{Z}_{3}$ . [2]
  - c) Show that the product of two primitive polynomials is a primitive polynomial. [4]
- **Q8)** a) Define : class equation. Obtain the conjugate classes of  $S_3$ . Verify the class equation for  $S_3$ . [4]
  - b) State and prove the first Isomorphism theorem for rings. [4]

c) Let 
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 4 & 6 \end{pmatrix}$$
  
$$J = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{pmatrix}$$
Find  $\sigma J^{-1}$ ;  $\sigma J \sigma^{-1}$ .

രദശര

[2]

[5442]-202

P1312

*Time : 3 Hours]* 

## [5442]-203 M.Sc. (IMCA) MATHEMATICS MIM 203: Numerical Analysis (2013 Pattern) (Semester-II)

[Max. Marks : 50

[Total No. of Pages : 3

SEAT No. :

Instructions to the candidates:

- 1) Attempt any <u>FIVE</u> questions.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.
- **Q1**) a) Use  $f(x) = \ln(1+x)$  and  $x_0=0$  and show that the Taylor Polynomial of degree N is, [5]

$$P_{N}(x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + \frac{(-1)^{N-1} x^{N}}{N}.$$

- b) Assume that  $f \in C[a,b]$  and that there exists a number  $r \in [a,b]$  such that f(r)=0. If f(a) and f(b) have opposite signs and  $\{c_n\}_{n=0}^{\infty}$  represents the sequence of mid points generated by the Bisection process then prove that  $|r c_n| \le \frac{b-a}{2^{n+1}}$  for n=0,1,2,... and  $\frac{\lim_{n \to \infty} c_n = r}{n \to \infty}$  [5]
- **Q2)** a) Consider  $P(x) = -0.02x^3 + 0.1x^2 0.2x + 1.66$  which passes through the four points (1,1.54), (2,1.5), (3,1.42) and (5,0.66). Find p(4). [4]
  - b) Determine the degree of precision of Simpson's  $\frac{3^{\text{th}}}{8}$  rule. [4]
  - c) Define i) Dominant eigenvector [2]
    - ii) Order of Root

- **Q3)** a) Given the centers  $x_0=1$ ,  $x_1=3$ ,  $x_2=4$ ,  $x_3=4.5$  and the coefficients  $a_0=4$ ,  $a_1=-1$ ,  $a_2=0.4$ ,  $a_3=0.01$   $a_4=-0.002$  find Newton Polynomials  $p_1(x)$ ,  $p_2(x)$ ,  $p_3(x)$  and  $p_4(x)$ . Also evaluate  $p_k(2.5)$  for k=1,2,3,4. [4]
  - b) Obtain Newton -Raphson formula to find r<sup>th</sup> root of a given number.[4]
  - c) Find the Jacobian matrix J(x,y,z) at point (1,3,2) for functions, [2]

$$f_{1}(x, y, z) = x^{3} - y^{2} + y - z^{4} + z^{2}$$
$$f_{2}(x, y, z) = xy + yz + xz$$
$$f_{3}(x, y, z) = \frac{y}{xz}$$

**Q4**) a) If  $p_n = \frac{1}{2^n}$  then using Aitken  $\Delta^2$  process show that  $q_n = 0 \forall n$ . [4]

- b) Start with  $p_0 = -2.6$  and  $p_1 = -2.4$  and use the secant method to find the root p = -2 of the polynomial function  $f(x) = x^3 - 3x + 2$ . Perform 3 iterations. [4]
- c) Define:

i) Global discretization error

ii) Local discretization error [2]

Q5) a) Find characteristic polynomial and eigenpairs for the matrix, [5]

$$A = \begin{pmatrix} -2 & 1 & 1 \\ -6 & 1 & 3 \\ -12 & -2 & 8 \end{pmatrix}$$

b) Find inverse of the matrix, 
$$A = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 4 & -5 \\ 1 & -5 & 3 \end{pmatrix}$$
 [5]

[5442]-203

*Q6*) a) Consider the following system,

$$5x - y + z = 0$$
  

$$2x + 8y - z = 11$$
  

$$-x + y + 4z = 3$$
  
Start with  $p_0 = 0$  and use Gauss - Seidel iteration to find  $p_k$  (k=1,2,3).

b) Use the Runge - Kutta method of order 4 to find the value of y when  

$$x=1$$
. Given that  $\frac{dy}{dx} = \frac{y-x}{y+x}$ ,  $y(0) = 1$  (take h=1) [5]

- Q7) a) Let  $f(x) = \sin x$ . Calculate approximations to f'(0.8) with h=0.1, h=0.01, h=0.001. Also compare with the value  $f'(0.8) = \cos(0.8)$ . [5]
  - b) Consider  $f(x)=2+\sin(2\sqrt{x})$ . Use the composite trapezoidal rule with 11 sample points to compute an approximation to the integral of f(x) taken over [1,6]. [5]
- **Q8)** a) Assume that  $g \in c$  [a,b]. If the range of the mapping y=g(x) Satisfies  $a \le y \le b \forall a \le x \le b$  then prove that g has a fixed point in [a,b], also suppose that g'(x) is defined oxer (a,b) and that a positive constant  $k \le 1$  exists with  $|g'(x)| \le k \le 1 \forall x \in (a,b)$  then prove that g has a unique fixed point P in [a,b]. [5]
  - b) Derive the formula  $f''(x_0) \approx \frac{2f_o 5f_1 + 4f_2 f_3}{h^2}$  using Lagrange interpolation polynomial f(t) based on the four points  $x_0, x_1, x_2$  and  $x_3$ .[5]

#### $\diamond$ $\diamond$ $\diamond$

Instructions to the candidates:

SEAT No. :

[Total No. of Pages : 2

[Max. Marks : 50

## P1313

*Time : 3 Hours]* 

#### [5442]-204

## M.Sc.Tech. - (I.M.C.A) MIM - 204 : OBJECT ORIENTED PROGRAMMING WITH C + + (2013 Pattern) (Semester - II)

|             | <i>1</i> ) | Attempt any 5 questions.                                            |        |
|-------------|------------|---------------------------------------------------------------------|--------|
|             | 2)         | Figures to the right indicate full marks.                           |        |
|             | 3)         | Assume suitable data if necessary.                                  |        |
|             |            |                                                                     |        |
|             |            |                                                                     |        |
| Q1)         | At         | tempt the following :                                               |        |
|             | a)         | Differentiate friend function and normal function.                  | [4]    |
|             | b)         | Explain the static class members with suitable examples.            | [4]    |
|             | c)         | Define : Class, Object.                                             | [2]    |
| Q2)         | Att        | tempt the following :                                               |        |
|             | a)         | What is constructor ? Explain different types of constructors in br | rief.  |
|             |            |                                                                     | [4]    |
|             | b)         | Explain how pre increment and post increment operators are overlo   | aded.  |
|             |            |                                                                     | [4]    |
|             | c)         | List the operators that can not be overloaded with friend function. |        |
|             |            |                                                                     | [2]    |
| <i>03</i> ) | Att        | tempt the following :                                               |        |
| ~ /         | a)         | How an exception is handled in $C++$ .                              | [4]    |
|             | b)         | Explain the 'new' and 'delete' operator in C++.                     | [4]    |
|             | c)         | What is late binding ?                                              | [2]    |
| <b>Q</b> 4) | Att        | tempt the following :                                               |        |
|             | a)         | What is reference variable ? Explain the use of reference variable  | e with |
|             |            | example.                                                            | [4]    |
|             | b)         | Explain the concept of public and private inheritance.              | [4]    |
|             | c)         | Give any four applications of C++.                                  | [2]    |

- Q5) Attempt the following :
  - a) What is a virtual base class ? Explain with suitable example. [4]
  - b) What are the different unformatted I/O operations ? Explain any two.[4]

[2]

- c) When do we use multiple catch handlers ?
- *Q6*) Attempt the following :
  - a) What do you mean by manipulator ? Explain the following output manipulators : setw(), and setfill(). [5]
  - b) Explain the file operation functions in C++ to manipulate the position of file pointers in a random access file. [5]
- *Q7*) Attempt the following :
  - a) Explain the overloading of function template with suitable example. [5]
  - b) Write a C++ program to create a class called STRING and Implement the following operations. Display the result after every operation by overloading the operator <<.
    - i) STRING S1 = 'VTU'
    - ii) STRING S2 = 'BELGAUM'
    - iii) STRING S3 = S1 + S2 (Use copy constructor). [5]
- *Q8*) Attempt the following :
  - a) Explain the concept of inheritance in detail. Also specify the types of inheritance with proper syntax. [5]
  - b) Write a program in C++ that reads a file and convert every character of the file into upper case letter. [5]

#### \*\*\*

#### [5442]-205

[Total No. of Pages : 2

#### M.Sc.

## INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATIONS

#### MIM-205 : Data Structure Using 'C' (2013 Credit Pattern) (Semester-II)

Time : 3 Hours]

[Max. Marks : 50

Instructions to the candidates:

- 1) Attempt any Five questions out of eight.
- 2) Figures to the right indicate full marks.

#### **Q1)** Attempt the following:

- a) Explain linear and non-linear data structure with suitable example. [4]
- b) Write a short note on FCFS CPU schedulling technique. [4]
- c) Define: Big-on (O) notation [2]
  - $Omega(\Omega)$  notation

#### **Q2)** Attempt the following:

- a) Write an algorithm to Evaluate prefix expression. [4]
- b) Write a 'C' program to create a doubly Linked list and delete an Element from doubly Linked List. [4]
- c) Define Dequeue. List an possible operation performed on Dequeue. [2]

#### *Q3*) Attempt the following:

- a) What do you mean by traversal? Explain the different types of Binary tree traversal. [4]
- b) Sort the following Elements using Quick Sort. Show all the intermediate steps. [4] 55, 7, 48, 32, 18, 23, 82, 62.
- c) Define Graph and Explain its types. [2]
- *Q4)* Attempt the following:
  - a) Write a 'C' program to sort 'n' Elements in descending order using bubble sort. [4]
  - b) Write an algorithm to implement non-recursive DFS. [4]
  - c) Define the node structure for doubly linked list. [2]

- *Q5*) Attempt the following.
  - a) Write Insert and delete functions in 'C' to implement Linear queue (use dynamic representation) [4]
  - b) Discuss the various possibilites while deleting a node from Binary Search Tree. [4]

[2]

[2]

- c) Define ADT.
- *Q6)* Attempt the following:
  - a) Convert the following graph into adjacency list and adjacency matrix. [4]



b) Evaluate the following Prefix expression using stack. Also give the Content of stack. [4]

Prefix String : \*+ AB–CD

A=5

- B=4 C=6 D=2
- c) Define i) Space Complexity ii) Time Complexity

#### *Q7*) Attempt the following:

Where

- a) Write an algorithm to add two polynomial representations as a singly linked list. [5]
- b) Write a short note on Merge sort. [5]
- *Q8*) Attempt the following:
  - a) Write a 'C' function to Calculate the height of a Binary tree. [5]
  - b) Write a function for adding and deleting elements from a Circular Queue. [5]



**P1315** 

## [5442]-301 M.Sc. (IMCA) MATHEMATICS MIM - 301 : Topology (2013 Pattern) (Semester - III)

*Time : 3 Hours]* Instructions to the candidates: [Max. Marks: 50

1) Attempt any five questions.

2) Figures to the right indicate full marks.

Let  $f: X \to Y$  be a function from a non-empty set X into a topological space *Q1*) a) (Y,  $\sigma$ ). Let  $\tau = \{ f^{-1}(G) | G \in \sigma \}$ . Show that  $\tau$  is a topology on X. [4]

- Let  $\mathcal{B}$  and  $\mathcal{B}'$  be bases for the topologie,  $\tau$  and  $\tau'$  respectively on a set X. **b**) Then prove that  $\tau'$  is finer than  $\tau$  iff and only if for each  $x \in X$  and each basis element  $B \in \mathcal{B}$  containing 'x', there exist  $B' \in \mathcal{B}'$  such that  $x \in B^1 \subseteq B$ .[4]
- Let  $X = \{a, b, c, d\}$  and  $S = \{\{a, b\}, \{c, d\}\}$ . Show that S is a sub basis c) for a topology on X and find the topology generated by S. [2]
- *Q2)* a) Let X be a non-empty set. Describe all closed sets in X with respect to finite complement topology on X. [4]
  - Let X be a topological space. Show that a subset A of X is closed if and b) only if boundary of A is contained in A. [4]
  - Find the interior of the set A = (0, 1) in  $\mathbb{R}$  with respect to k-topology. [2] c)
- Let X be a topological space and A,  $B \subseteq X$ . Show that  $\overline{A \times B} = \overline{A} \times \overline{B}$ **Q3)** a) in the space XXX. [4]
  - Show that  $f: \mathbb{R}^1 \to \mathbb{R}$ , defined as f(x) = x is not continuous function. b) (Here  $\mathbb{R}$ , is  $\mathbb{R}$  with respect to lower limit topology). [4] [2]
  - State pasting lemma. c)
- **Q4)** a) Show that every regular space is Hausdorff. [4] Let X be a T<sub>1</sub>-space and A  $\subseteq$  X. Prove that a point  $x \in X$  is a limit point of b) A if and only if every neighborhood of 'x' contains infinitely many points of A. [4]
  - Give an example of a continuous, closed map but not open. c) [2]

**SEAT No. :** 

[Total No. of Pages : 2

- **Q5)** a) Show that every second countable space is first countable. [4] Let X be a first countable space. Prove that a point  $x \in A$  if and only if b) there exists a sequence of points  $\langle x_n \rangle$  of A such that  $x_n \to x$ . [4] c) Define separable space. [2] **Q6)** a) Prove that every second countable space is Lindelöf. [4] b) Show that closed subspace of a normal space is normal. [4] [2] Define completely regular space. c)
- **Q7)** a) If Y is a compact subspace of the Hausdorff sapce X and  $x_0$  is not in Y, then show that there exists disjoint open sets U and V containing  $x_0$  and Y respectively. [5]
  - b) Prove that union of a collection of connected subspaces of X that have a common point is connected. [5]
- **Q8)** a) Let  $f: A \to XXY$  be given by  $f(a) = (f_1(a), f_2(a))$ , where  $f_1: A \to X$  and  $f_2: A \to X$ . Prove that  $f_1$  is continuous if and only if  $f_1$  and  $f_2$  are continuous. [5]

b) Prove that product of two regular spaces is regular. [5]

#### P1316

SEAT No. :

[Total No. of Pages : 3

#### [5442]-302

#### M.Sc. - (IMCA)

#### MATHEMATICS

#### MIM - 302 : Design and Analysis of Algorithms (2013 Pattern) (Semester - III)

*Time : 3 Hours]* 

[Max. Marks : 50

Instructions to the candidates:

- 1) Answer any five questions out of eight questions.
- 2) Figures to the right indicate full marks.

**Q1)** a) Construct the recurrence tree of the recurrence relation

 $T(n) = 2T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 4n \text{ and hence find a good asymptotic bound}$  T(n).[5]

on T(n).

b) Write definition of  $\odot$  -notation and show that  $n^2 - 3n$  is of order  $\odot(n^2)$ .[5]

# **Q2)** a) Illustrate the operation of the COUNTING - SORT on the array $A = \langle 3, 4, 1, 4, 0, 4, 1 \rangle$ . [5]

- b) Write the algorithm PARTITION in QUICKSORT and explain it. [5]
- Q3) a) Consider the matrix-chain multiplication problem with the sequence of dimensions (5, 4, 6, 2, 7). Compute m [2, 4].
  - b) Explain : greedy algorithm and also explain the steps through which the greedy algorithm is developed. [5]
- Q4) a) Find the Huffman code for the following data :

| Character                   | а  | b  | c  | d  | e  | f  |
|-----------------------------|----|----|----|----|----|----|
| Frequency<br>(In thousands) | 35 | 22 | 45 | 15 | 29 | 20 |

[5]

b) Use Kruskal's algorithm to find minimum spanning tree of the following graph. [5]



Q5) a) Apply DFS on the following graph and hence find it's DFS tree. (start with the vertex A).



- b) Illustrate the operation of BUCKET-SORT on the following array. <0.59, 0.14, 0.89, 0.17, 0.51, 0.74, 0.39, 0.79, 0.85> [3]
- c) Write at least two characteristics of an algorithm. [2]
- Q6) a) Apply Floyd warshall algorithm to find lengths of shortest paths from vertex u to every other vertex of a graph G, where the adjacency matrix of G is

$$W = \begin{array}{cccc} u & v & w \\ 0 & 4 & 11 \\ c & 0 & 2 \\ w & 3 & \infty & 0 \end{array}$$
[5]

- b) Explain polynomial-time reduction algorithm. [3]
- c) When is it said that a problem exhibits optimal substructure property? [2]
- [5442]-302

Q7) a) Determine longest common subsequence of the sequences

$$X = \langle 0, 1, 1, 0, 1, 0 \rangle$$
 and  $Y = \langle 1, 0, 0, 1, 0 \rangle$ . [5]

- b) Illustrate the operation of MERGE SORT on the array  $A = \langle 5, 9, 2, 8, 4, 7 \rangle$ . [3]
- c) Use master theorem to solve the recurrence

$$T(n) = 4T\left(\frac{n}{2}\right) + n$$
[2]

[5]

- **Q8)** a) Illustrate the operation of BUILD-MAX-HEAP on the array  $A = \langle 14, 25, 8, 20, 12, 30, 2, 10, 18 \rangle$ .
  - b) Illustrate the operation of RADIX-SORT on the following list : CAT, TAR, BIG, COW, BAR. [3]
  - c) Determine if the following array is a min-heap.

 $A = \langle 10, 24, 19, 29, 32, 22, 30, 31, 28, 35, 36 \rangle$  Justify your answer. [2]



SEAT No. :

[Total No. of Pages : 2

#### P1317

[5442] - 303

#### M.Sc.

## INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATION MIM 303 : Object Oriented Software Engineering (2013 Credit Pattern) (Semester - III)

| Tim  | e : 3      | Hours] [Max. Marks                                                                         | :50                   |
|------|------------|--------------------------------------------------------------------------------------------|-----------------------|
| Inst | ructi      | ions to the candidates:                                                                    |                       |
|      | <i>1</i> ) | Attempt any five questions out of eight questions.                                         |                       |
|      | 2)         | Figures to the right indicate full marks.                                                  |                       |
|      |            |                                                                                            |                       |
| Q1)  | At         | tempt the following :                                                                      |                       |
|      | a)         | Explain the factors in distributed object architecture.                                    | [4]                   |
|      | b)         | Draw a DFD diagram of employee payroll system.                                             | [4]                   |
|      | c)         | What are UI design principles.                                                             | [2]                   |
| Q2)  | Att        | tempt the following :                                                                      |                       |
|      | a)         | Explain functional and nonfunctional requirement in software engineer requirement process. | ring<br>[ <b>4</b> ]  |
|      | b)         | What is the goal of Test case design process ?. Give the var approaches.                   | ious<br>[ <b>4</b> ]  |
|      | c)         | Define extreme programming.                                                                | [2]                   |
| Q3)  | Att        | tempt the following :                                                                      |                       |
| ~    | a)         | Write a short note on emergent system property.                                            | [4]                   |
|      | b)         | Explain briefly the four main phases of requirement engineering proc                       | cess.                 |
|      | ,          |                                                                                            | [4]                   |
|      | c)         | What are critical systems and also give its types.                                         | [2]                   |
| Q4)  | Att        | tempt the following :                                                                      |                       |
|      | a)         | Explain the process activity of waterfall model.                                           | [4]                   |
|      | b)         | Explain the stages involved in static analysis of verification and valida model.           | ution<br>[ <b>4</b> ] |
|      | c)         | Define fat-client and thin-client model.                                                   | [2]                   |

- Q5) Attempt the following :
  - a) Write a short note on tools that are included in RAD environment. [4]
  - b) Explain socio-technical system. [4]
  - c) Give any two differences between Software Engineering and System [2]
- Q6) Attempt the following :
  - a) Write a note on Agile method. [4]
  - b) Explain the key challenges facing Software Engineering. [4]
  - c) Define :
    - i) Test case
    - ii) Test design.
- Q7) Attempt the following :
  - a) Draw a state machine diagram of simple microwave oven. [5]
  - b) Explain the importance of feasibility study in software engineering along with their types. [5]
- *Q8*) Attempt the following :
  - a) Draw a class diagram of college management system. [5]
  - b) Define system dependability ? Explain dimension of system dependability.

[5]

[2]

\*\*\*

## P1318

## [5442]-304 M.Sc. (IMCA) COMPUTER SCIENCE MIM : 304 - Operating Systems (2013 Pattern) (Semester - III)

SEAT No. :

[Total No. of Pages : 3

| Time | Time : 3Hours] [Max |                                                                                  |                      |  |
|------|---------------------|----------------------------------------------------------------------------------|----------------------|--|
| Inst | ructio              | ons to the candidates:                                                           |                      |  |
|      | 1)                  | Attempt any five of the following.                                               |                      |  |
|      | 2)                  | Figures to the right indicate full marks.                                        |                      |  |
| Q1)  | Att                 | empt the following.                                                              |                      |  |
|      | a)                  | Explain contiguous memory allocation.                                            | [4]                  |  |
|      | b)                  | Explain dining philosopher's problem.                                            | [4]                  |  |
|      | c)                  | List the two operations of operating system.                                     | [2]                  |  |
| Q2)  | Atte                | empt the following.                                                              |                      |  |
|      | a)                  | Explain four necessary conditions for a deadlock to occur.                       | [4]                  |  |
|      | b)                  | Explain virtual memory management.                                               | [4]                  |  |
|      | c)                  | Give any two differences between user level thread & kernel level thre           | ad.<br>[2]           |  |
| Q3)  | Atte                | empt the following.                                                              |                      |  |
|      | a)                  | Write a note on process state diagram.                                           | [4]                  |  |
|      | b)                  | What is a file? Discuss several pieces of information associated with open file. | ı an<br>[ <b>4</b> ] |  |
|      | c)                  | What is the dispatcher latency time?                                             | [2]                  |  |
| Q4)  | a)                  | Write a note on working of following disk scheduling algorithm.                  | [4]                  |  |
|      |                     | i) FCFS ii) SCAN                                                                 |                      |  |
|      | b)                  | Explain the types of schedulers.                                                 | [4]                  |  |
|      | c)                  | List any four file attributes.                                                   | [2]                  |  |
|      |                     | P                                                                                | Т.О.                 |  |

| Q5) | Atte | mpt              | npt the following. |                    |                      |                |               |         |         |           |        |       |               |
|-----|------|------------------|--------------------|--------------------|----------------------|----------------|---------------|---------|---------|-----------|--------|-------|---------------|
|     | a)   | Exp              | olaina             | any fou            | r file op            | eratio         | ons.          |         |         |           |        |       | [4]           |
|     | b)   | Wh<br>into       | at is t<br>wait    | the wai<br>for gra | t for gra<br>ph? Giv | ph? H<br>e exa | How i<br>mple | is resc | ource a | llocatior | n grap | h con | verted<br>[4] |
|     | c)   | Wh               | at is              | spoolin            | lg.                  |                |               |         |         |           |        |       | [2]           |
| Q6) | Atte | mpt              | the fo             | ollowin            | g.                   |                |               |         |         |           |        |       |               |
|     | a)   | Exp              | olain t            | he follo           | owing:               |                |               |         |         |           |        |       | [4]           |
|     |      | i)               | Rea                | nd time            | embedd               | led sy         | ysten         | ns.     |         |           |        |       |               |
|     |      | ii)              | Mu                 | ltimedi            | a system             | IS.            |               |         |         |           |        |       |               |
|     | b)   | Exp              | olaint             | the follo          | owing te             | rms i          | n brie        | ef:     |         |           |        |       | [4]           |
|     |      | i)               | Wat                | iting tin          | ne                   |                |               |         | ii)     | Respons   | e tim  | e     |               |
|     |      | iii)             | Tur                | naroun             | d time               |                |               |         | iv)     | Through   | put    |       |               |
|     | c)   | Def              | ine tł             | ne term            | -swappir             | ıg.            |               | C       |         |           |        |       | [2]           |
| Q7) | Atte | mpt              | the fo             | ollowin            | g.                   |                | 2             | 5       |         |           |        |       |               |
|     | a)   | Cor              | nside              | r the fo           | llowing              | snap           | shot          | of sys  | tem.    |           |        |       | [5]           |
|     |      | Pro              | cess               |                    |                      | All            | ocati         | on      |         |           | Max    |       |               |
|     |      |                  |                    |                    |                      | А              | В             | С       |         | А         | В      | С     |               |
|     |      | P <sub>0</sub>   |                    |                    |                      | 2              | 3             | 2       |         | 9         | 7      | 5     |               |
|     |      | $\mathbf{P}_{1}$ |                    |                    |                      | 4              | 0             | 0       |         | 5         | 2      | 2     |               |
|     |      | $P_2$            |                    |                    |                      | 5              | 0             | 4       |         | 11        | 0      | 4     |               |
|     |      | $P_3$            |                    |                    |                      | 4              | 3             | 3       |         | 4         | 4      | 4     |               |
|     |      | P <sub>4</sub>   |                    |                    |                      | 2              | 2             | 4       |         | 6         | 5      | 5     |               |
|     |      | Tota             | al Re              | source             | S                    |                |               |         |         |           |        |       |               |
|     |      | А                | В                  | С                  |                      |                |               |         |         |           |        |       |               |
|     |      | 3                | 3                  | 2                  |                      |                |               |         |         |           |        |       |               |
|     |      | Ans              | wert               | the follo          | owing:               |                |               |         |         |           |        |       |               |
|     |      | i)               | Wh                 | at are t           | he conte             | ents o         | f nee         | d mat   | rix?    |           |        |       |               |
|     |      | ii)              | Is t               | he syste           | em in a s            | safe s         | tate?         | If yes  | s, give | the safe  | sequ   | ence. |               |
|     | b)   | Exp              | lain               | usage a            | nd imple             | emen           | tatio         | nofbi   | nary se | emaphor   | e.     |       | [5]           |

[5442]-304

**Q8)** Attempt the following.

| a) | Explain any fi | ve kernel I/O system. |              | [5] |
|----|----------------|-----------------------|--------------|-----|
| b) | Consider the f | Collowing snapshot of | f a system.  | [5] |
|    | Process        | Burst time            | Arrival Time |     |
|    | P <sub>1</sub> | 5                     | 1            |     |
|    | P <sub>2</sub> | 3                     | 0            |     |
|    | P <sub>3</sub> | 2                     | 2            |     |
|    | P <sub>4</sub> | 4                     | 3            |     |
|    | P <sub>5</sub> | 2                     | 13           |     |

Calculate the average turnaround time and average waiting time using SJF (non-preemptive) and Round Robin (Time quantum=2) CPU scheduling algorithm.

[5442]-304

SEAT No. :

P1319

## [5442]-305

## M.Sc. (IMCA)

#### MATHEMATICS

#### MIM - 305 : Database Fundamentals (2013 Pattern) (Credit System) (Semester - III)

*Time : 3 Hours] Instructions to the candidates:*  [Max. Marks : 50

[Total No. of Pages : 3

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- *Q1*) Attempt the following:
  - a) Explain any four significant differences between file-processing system and a DBMS. [4]
  - b) What is data abstraction? Explain the various levels of data abstraction.[4]
  - c) Define instance and schema. [2]
- *Q2*) Attempt the following:
  - a) Write a short note on any two physical storage devices. [4]
  - b) Explain the difference between fixed length and variable length records.[4]
  - c) What is a descriptive attribute? Give an example. [2]

#### Q3) Attempt the following:

- a) Explain the following Relational Algebra operations with example.
  - i) The select operation.
  - ii) The project operation. [4]
- b) Write a short note on mapping cardinalities. [4]
- c) Give any two notations used to draw an E-R diagram. [2]

#### Q4) Attempt the following:

- a) What is Normalization? Explain 2NF and 3NF form of normalization with example. [4]
- b) What are the various types of anomalies that might arise if we have redundant data? [4]
- c) List the types of attributes associated with an entity set. [2]

**Q5**) Attempt the following.

| a) | Write a short note on conflict serializability. | [4] |
|----|-------------------------------------------------|-----|
|    |                                                 |     |

- b) Explain the states of a transaction with help of a state diagram. [4]
- c) What is a transaction? List the ACID properties of a transaction. [2]
- *Q6*) Attempt the following:

| a) | Explain the different modes of locks.              | [4] |
|----|----------------------------------------------------|-----|
| b) | Explain the following SQL operations with example. | [4] |
|    | i) Union operation                                 |     |

- ii) Intersect operation
- c) Give the basic structure of a SQL query. [2]
- *Q7*) Attempt the following:
  - a) Consider the relation schema R = (A, B, C, D, E, F) and the set of functional dependencies defined on R as

$$F = \{ A \to C, C \to BE, E \to F, CD \to F, E \to D \}$$

[5]

Compute closure of F, i.e. F<sup>+</sup>

b) Convert the following E-R model to corresponding relational model.[5]



[5442]-305

#### *Q8*) Attempt the following:

- a) Consider the following database employee (<u>empno</u>, empname, salary, designation) department (<u>deptno</u>, dept\_name, city) employee and department are related with many-to-one relationship. Give expression in SQL query for [5]
  - i) List the department names located at 'Pune' city.
  - ii) Update salary of every employee by 10%.
  - iii) Display the names and salaries of all the managers.
  - iv) List the department name with highest sum of salaries.
- b) Consider the database from Q.8. a) and give expression in relational algebra for [5]
  - i) List the names of all the departments.
  - ii) List the names of employees getting salary between 30000 and 50000.
  - iii) Display the details of all the managers.
  - iv) Display the name and designation of employees working in 'HR' department and getting salary less than 50000.

#### $\mathfrak{H}\mathfrak{H}\mathfrak{H}$

P1320

SEAT No. :

[Total No. of Pages : 3

## [5442]-401 M.Sc. (IMCA) MATHEMATICS MIM 401: Ordinary Differential Equations (2013 Pattern) (Semester-IV)

*Time : 3 Hours] Instructions to the candidates:*  [Max. Marks : 50

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is not allowed.
- **Q1**) a) Find the recurrence relation and the general solution of the differential equation y'' + xy = 0 by using power series method around x = 0. [4]
  - b) Find a particular solution of  $y'' + y = \sin x$  using the method of Undetermined coefficients. [4]

c) Solve 
$$\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = 0.$$
 [2]

- Q2) a) Using Picard's method of successive Approximations solve the initial value problem y' = y + x, y(0) = 1 [4]
  - b) Show that the origin is a stable critical point of the equation of motion.[4]
  - c) Find general solution of the differential equation  $y' = e^{3x} x$  [2]
- **Q3**) a) Find the general solution of the following system. [4]

$$\frac{dx}{dt} = 4x - 3y$$
$$\frac{dy}{dt} = 8x - 6y$$

- b) State and prove Sturm Seperation Theorem. [4]
- c) Determine whether x = 0 is an ordinary point of the differential equation  $y'' - xy^1 + 2y = 0$  [2] *PTO*.

**Q4**) a) Obtain Binomial series expansion by solving (1+x)y' = py, y(0) = 1 where 'P' is any arbitrary constant by using power series. [4]

[4]

[2]

- b) For the following nonlinear system.
  - i) find the critical point
  - ii) find the differential equation of the path
  - iii) solve this equation to find the path
  - iv) sketch a few of the paths

$$\frac{dx}{dt} = y(x^2 + 1)$$
$$\frac{dy}{dt} = -x(x^2 + 1)$$

c) Find the Wronskian of the set  $\{x, x^2\}$  on  $(-\infty, \infty)$ 

5

Q5) a) Determine the nature and stability properties of the critical point (0,0) for the following linear autonomous system. [4]

$$\frac{dx}{dt} = 2x$$
$$\frac{dy}{dt} = 3y$$

- b) Explain the method of variation of parameters to solve a second order differential equation y" + P(x)y' + Q(x)y = R(x) where P(x),Q(x) and R(x) are functions of x. [4]
- c) State Volterra's Prey-Predator equations. [2]

**Q6**) a) If two solutions  $x = x_1(t)$ ,  $y = y_1(t)$  and  $x = x_2(t)$ ,  $y = y_2(t)$  of the homogeneous system.

$$\frac{dx}{dt} = a_1(t)x + b_1(t)y$$
$$\frac{dy}{dt} = a_2(t)x + b_2(t)y$$

are linearly independent on [a,b], then show that,

 $x = c_1 x_1 (t) + c_2 x_2 (t),$  $y = c_1 y_1 (t) + c_2 y_2 (t)$ 

- is the general solutions of the above homogeneous system on [a, b].[4] b) If  $y_1(x)$  and  $y_2(x)$  are any two solutions of the equation y'' + P(x)y' + Q(x)y = 0 on [a, b], then prove that their Wronskian is either identically zero or never zero on [a, b]. [4]
- c) Two solutions of y'' 2y' + y = 0 are  $e^{-x}$  and  $5e^{-x}$ . Is  $y = c_1 e^{-x} + c_2 5e^{-x}$  a general solution of the given differential equation? [2]

Q7) a) Solve 
$$2y'' + 3y' + y = e^{-3x}$$
. [5]

- b) Let y(x) and z(x) be two nontrivial solutions of y'' + q(x)y = 0 and z'' + r(x)z = 0 respectively, where q(x) and r(x) are positive functions such that q(x) > r(x). Prove that y(x) vanishes at least once between any two successive zeros of z(x). [5]
- Q8) a) Find two independent Frobenius series solutions of  $2x^2y'' + x$ (2x+1)y' - y = 0. [5]

b) Let u(x) be any nontrivial solution of u'' + q(x) u = 0 where q(x) > 0 for all x > 0. If  $\int_{1}^{\infty} q(x)dx = \infty$ , then prove that u(x) has infinitely many zeros on the positive x-axis. [5]



#### P1321

SEAT No. :

[Total No. of Pages : 3

#### [5442]-402

## M.Sc. (IMCA) MATHEMATICS MIM - 402 : Coding Theory (2013 Pattern) (Semester - IV)

Time : 3 Hours]

[Max. Marks: 50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Define : q-ary symmetric channel. Suppose that codewords from the binary code {000, 100, 111} are being sent over a binary symmetric channel with crossover probability P=0.03. Use maximum likelihood decoding rule to decode the word received as : 010. [4]
  - b) For a binary symmetric channel with crossover probability  $P < \frac{1}{2}$ , show that the maximum likelihood decoding rule is the same as the nearest neighbour decoding rule. [4]
  - c) Find two polynomials u(x), v(x) in  $\mathbb{Z}_2[x]$  such that deg u(x) < 4, deg v(x) < 3and  $u(x) \cdot (1 + x^2 + x^3) + v(x)(1 + x + x^2 + x^3 + x^4) = 1$ . [2]
- **Q2)** a) Let  $\alpha$  be a root of the polynomial  $2 + x + x^2 \in \mathbb{F}_3[x]$ . Find the minimal polynomial of  $\alpha$  and of  $\alpha^2$ . [3]
  - b) In the vector space  $\mathbb{F}_2^3$ , let  $S = \{101, 111, 010\}$ . Find  $\langle S \rangle$  and  $S^{\perp}$ , in usual notation. [3]

c) Let C = {0000, 1010, 0101, 1111} be a linear code over  $\mathbb{F}_2$ : Find dim(C). Verify that dim(C) + dim(C<sup> $\perp$ </sup>) = 4; and show that  $(C<sup><math>\perp$ </sup>)<sup> $\perp$ </sup> = C. [4]

**Q3)** a) Let C be a linear code over  $\mathbb{F}_q$ . Show that the Hamming weight of C is the same as the distance of the code, d(C). [4]

*P.T.O.* 

b) Let q = 3. Let  $S \neq \phi$ ,  $S \subseteq \mathbb{F}_q^n$  and let C be the linear code C=<S>. Let A be the martrix whose rows are words in S and let the row reduced

echelon form of A be given by  $A \rightarrow \begin{pmatrix} G \\ 0 \end{pmatrix}$  where 0 is the zero matrix and  $\mathbf{G} = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 & 2 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$ 

Find a basis for  $C^{\perp}$ . How many code-words are there in C? [4]

25.

c) Let C be the binary 
$$[5, 3]$$
 - linear code over  $\mathbb{F}_2$  with the generator matrix

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Encode the message  $\overline{u} = 101$ . [2] *Q4*) a) Let H =  $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$  be the parity check matrix for the binary linear code C={0000, 1011, 0101, 1110}. Prepare a syndrome look-up table for C. Decode the received word  $\overline{w} = 1111$ . [4]

b) For an integer 
$$q > 1$$
, and integers  $n, d$  such that  $1 \le d \le n$ , prove in usual

notation that 
$$A_q(n,d) \le \frac{q^n}{\sum_{i=0}^e \binom{n}{i} (q-1)^i}$$
 where  $e = \left\lfloor \frac{d-1}{2} \right\rfloor$  [4]

- Find a generator matrix for the binary [7,4] cyclic code with generator c) polynomial  $g(x)=1+x^2+x^3$ . [2]
- Define binary Hamming code of length  $n = 2^r 1$ . **Q5**) a) [2]
  - Find the generator matrix and parity check matrix for the 7-ary Reed Solomon b) code of length 6 with generator polynomial  $g(x) = (x-3(x-3^2)(x-3^3))$ . [4]
  - Find the dimension of the narrow sense binary BCH code of length 31 c) with designed distance  $\delta = 11$ . What is a lower bound for the dimension?[4]

[5442]-402

- **Q6)** a) Let C be a[n, k, d] linear code and H a parity check matrix for C. Let  $\overline{u}, \overline{v}$  be elements of  $\mathbb{F}_{q}^{n}$ . Prove that [4]
  - i)  $S(\overline{u} + \overline{v}) = S(\overline{u}) + S(\overline{v})$ , where  $S(\overline{w})$  denotes the syndrome of the word  $\overline{w}$ ; and

[2]

- ii)  $S(\overline{u}) = \overline{0}$  iff  $\overline{u}$  is a code word of C.
- b) Let C be a linear code over  $\mathbb{F}_q$ . Define the extended code of C. If C is the binary linear code {000, 111, 011, 100} find the extended code  $\overline{C}$  of C. [4]
- c) Define binary simplex code.
- **Q7)** a) Show that 3 is a primitive element of the finite field  $\mathbb{F}_7$ . List the quadratic residues modulo 7 and also the quadratic non-residues modulo 7. [4]
  - b) Let p be an odd prime. Show that the product of two quadratic residues modulo p is a quadratic residue modulo p. [2]
  - c) Let C and D be linear codes of the same length, over  $\mathbb{F}_q$ . Define

 $\mathbf{C} + \mathbf{D} = \left\{ \overline{\mathbf{c}} + \overline{d} \mid \overline{\mathbf{c}} \in C, \overline{d} \in D \right\}$ 

Show that C+D is a linear code and that  $(C+D)^{\perp}=C^{\perp}\cap D^{\perp}$ . [4]

# *Q8*) a) Find a complete set of representatives of cyclotomic cosets of 2 modulo 15.[4]

- b) Obtain the Slepian (standard) array of the binary linear code  $C = \{0000, 1011, 0101, 1110\}$ Hence decode the received word  $\overline{w} = 1001$ . [2]
- c) Let I be a non-zero ideal in  $\frac{\mathbb{F}_q[x]}{\langle x^n 1 \rangle}$  and g(x) be a non-zero monic polynomial of least degree in I. Show that g(x) is a generator of I and that g(x) divides  $(x^n 1)$ . [4]

#### രുശര

P1322

SEAT No. :

[Total No. of Pages : 2

## [5442]-403 [Tot M.Sc. (IMCA) MIM- 403: COMPUTER NETWORKS (2013 Pattern) (Semester-IV)

| Time        | e : 3 .  | Hours] [N                                                                         | Max. Marks : 50     |
|-------------|----------|-----------------------------------------------------------------------------------|---------------------|
| Instr       | ructi    | ions to the candidates:                                                           |                     |
|             | 1)       | Attempt any five questions.                                                       |                     |
|             | 2)<br>2) | Figure to right indicates full marks.                                             |                     |
|             | 3)       | Assume suitable data if necessary.                                                |                     |
| Q1)         | At       | ttempt the following:                                                             |                     |
|             | a)       | Compare OSI reference model with TCP/IP.                                          | [4]                 |
|             | b)       | Define the following terms:                                                       | [4]                 |
|             |          | i) Phase                                                                          |                     |
|             |          | ii) Bandwidth                                                                     |                     |
|             |          | iii) Wavelength                                                                   |                     |
|             |          | iv) Frequency                                                                     |                     |
|             | c)       | What is a flow control? Why it is needed?                                         | [2]                 |
|             |          |                                                                                   |                     |
| Q2)         | At       | ttempt the following:                                                             |                     |
|             | a)       | What is pipelining? Discuss the Go Back n Protocol.                               | [4]                 |
|             | b)       | Explain 1, n, p persistent protocol.                                              | [4]                 |
|             | c)       | Show Manchester and differential Manchester encoding point stream 11101101.       | pattern for the [2] |
| <b>Q</b> 3) | At       | ttempt the following:                                                             |                     |
|             | a)       | What is congestion? Explain the closed loop solution for control.                 | or congestion [4]   |
|             | b)       | If the frame is 110101011 and generator is $X^4 + X + 1$ . Wha transmitted frame? | t would be the [4]  |
|             | c)       | Find the class id, Net id, Host id and sub net id for the 212.60.54.27/16         | ne IP address [2]   |
|             |          |                                                                                   |                     |

*Q4*) Attempt the following:

| 2.          |      |                                                                                                                                                               |                             |  |  |  |  |  |
|-------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|
|             | a)   | List the goals of gigabit Ethernet.                                                                                                                           | [4]                         |  |  |  |  |  |
|             | b)   | How CSMA/CD works? How it is better than CSMA? [4]                                                                                                            |                             |  |  |  |  |  |
|             | c)   | Consider the following code with only 4 valid code we 0000000000,0000011111, 111100000,11111111                                                               | ords<br>can<br>[ <b>2</b> ] |  |  |  |  |  |
| Q5)         | Atte | mpt the following:                                                                                                                                            |                             |  |  |  |  |  |
|             | a)   | Differentiate between logical, physical and port address.                                                                                                     | [4]                         |  |  |  |  |  |
|             | b)   | What is Shannon capacity formula? Find out the maximum number bits/ second transmitted for a channel of 6 kHz bandwidth and the sign to noise ratio is 50 db. | r of<br>gnal<br><b>[4]</b>  |  |  |  |  |  |
|             | c)   | What is optimality principal?                                                                                                                                 | [2]                         |  |  |  |  |  |
| <b>Q6</b> ) | Atte | mpt the following:                                                                                                                                            |                             |  |  |  |  |  |
|             | a)   | What is the need of network address translation? How NAT ro maintains translation table.                                                                      | uter<br>[ <b>4</b> ]        |  |  |  |  |  |
|             | b)   | Write a note on firewalls.                                                                                                                                    | [4]                         |  |  |  |  |  |
|             | c)   | Define star and mesh topology.                                                                                                                                | [2]                         |  |  |  |  |  |
| Q7)         | Atte | mpt the following:                                                                                                                                            |                             |  |  |  |  |  |
|             | a)   | Explain the IPv4 datagram format.                                                                                                                             | [5]                         |  |  |  |  |  |
|             | b)   | Explain the following fields of IEEE802.3 Mac Frame:                                                                                                          | [3]                         |  |  |  |  |  |
|             |      | i) Preamble                                                                                                                                                   |                             |  |  |  |  |  |
|             |      | ii) SFD                                                                                                                                                       |                             |  |  |  |  |  |
|             |      | iii) CRC                                                                                                                                                      |                             |  |  |  |  |  |
|             | c)   | What is tunnelling?                                                                                                                                           | [2]                         |  |  |  |  |  |
| Q8)         | Atte | mpt the following:                                                                                                                                            |                             |  |  |  |  |  |
|             | a)   | Explain architecture of IEEE 802.11 with BSS and ESS.                                                                                                         | [5]                         |  |  |  |  |  |
|             | b)   | Compare virtual circuit with datagram.                                                                                                                        | [3]                         |  |  |  |  |  |
|             | c)   | What is steganography?                                                                                                                                        | [2]                         |  |  |  |  |  |



**P1323** 

#### SEAT No. :

[Total No. of Pages : 2

#### [5442]-404 M.Sc.

### INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATIONS MIM - 404 : Programming in PHP (2013 Pattern) (Semester - IV)

*Time : 3 Hours*] [Max. Marks : 50 Attempt any five questions of the following. 1) 2) Figures to the right side indicate full marks. **Q1**) Attempt all of the following : State the difference between GET & POST methods. [4] a) Explain various techniques used to maintain state in PHP. [4] b) State compound data types in PHP. [2] c) **Q2**) Attempt all of the following : What is associative array? Explain with suitable example, how it is a) different from indexed array. [4] Explain PHP functions that convert between arrays and variables. b) [4] Explain heredoc statement in PHP. c) [2] **Q3**) Attempt all of the following : Write a short note on introspection. a) [5] How to define variable in PHP? Explain in detail scope of variables. [5] b) Q4) Attempt all of the following : Explain advantages and disadvantages of XML. a) [5] Write a short note on cookies. b) [5] Q5) Attempt all of the following : Write a PHP script to accept two strings and count the occurrences of a) first string in second string. [5]

Write a function to count no. of times given element occurs in array ?[5] b)

Instructions to the candidates:

Q6) Attempt all of the following :

| ~ /         |      |                                                                       |      |
|-------------|------|-----------------------------------------------------------------------|------|
|             | a)   | Write a PHP script to read directory name from user and display all f | iles |
|             |      | with their sizes in tabular format.                                   | [၁]  |
|             | b)   | Explain the environment variables in PHP.                             | [5]  |
| <b>0</b> 7) | Atte | mpt all of the following:                                             |      |
| 2.7         | a)   | Explain following functions with syntax and example.                  | [5]  |
|             | u)   | i) range ( )                                                          | [0]  |
|             |      | i) list()                                                             |      |
|             |      | iii) array_pad ()                                                     |      |
|             |      | iv) strpos ()                                                         |      |
|             |      | v) strrchr ( )                                                        |      |
|             | b)   | What are the different kinds of Parsers used in XML ?                 | [5]  |
|             |      |                                                                       |      |
| <b>Q</b> 8) | Atte | mpt all of the following :                                            |      |
|             | a)   | What is sticky form ? Explain sticky form with suitable example.      | [5]  |
|             | b)   | What is inheritance? Explain with suitable example.                   | [5]  |
|             |      |                                                                       |      |
|             |      |                                                                       |      |
|             |      | ***                                                                   |      |
|             |      |                                                                       |      |
|             |      |                                                                       |      |
|             |      |                                                                       |      |
|             |      | Ÿ                                                                     |      |

#### [5442]-405

[Total No. of Pages : 2

#### M.Sc.

## INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATIONS MIM-405 : Java Programming (2013 Pattern) (Semester-IV)

#### Time : 3 Hours] [*Max. Marks* : 50 Instructions to the candidates: Attempt any Five questions out of eight. 1) Figures to the right indicate full marks. 2) Explain the various access specifiers used in Java. [4] *Q1*) a) Explain the exception types in java. b) [4] How are command line arguments used in java? [2] c) Explain the concept of interfaces in java. Explain the use of any one *Q2)* a) predefined interface. [4] Explain inheritance. Are private members and private method inherited b) by a subclass? Explain. [4] Explain the terms: implements and import. [2] c) Write a note on Byte stream and character streams in java. *Q3)* a) [4] [4] b) Explain the types of JDBC drivers. What is the difference between finally and finalize () in java? c) [2] Explain wrapper classes with an example. [4] **04)** a) Differentiate between AWT and Swing. b) [4] What is JVM and what is its role so that java becomes platform c) independent? [2] Write a program to copy contents of one file to another. The filenames **Q5)** a) are passed as command line arguments. [4] Write a program to define an exception called "Invalid Amount" that is b) thrown when withdrawal amount is entered is more than the available amount. [4] List the different Resultset types in JDBC. [2] c)

- *Q6)* a) What is Layout Manager? Explain Flow Layout and Grid Layout. [4]
  - b) Write a program to store 'n' names in an ArrayList and traverse the collection using an iterator. [4]
  - c) What is the difference between Method overriding and method overloading? [2]
- Q7) a) Write a program using jdbc to read student data(rno, name, percentage) and perform the following operations: [5]
  - i) Search by name.
  - ii) Find student with highest percentage.
  - b) What is ragged array? Explain with appropriate diagram. How to initialize 2-D array in java? [5]

[5]

- Q8) a) Write a program to create the following class hierarchy: Item(id, name, price)-> SaleItem(discount). Accept details of 'n' SaleItem objects and display the item details having the highest discount. [5]
  - b) Explain any five swing components.

### P1325

## [5442]-501

#### M.Sc.

## INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATIONS MIM - 501 : Digital Image Processing

#### (2013 Pattern) (Semester - V) (Credit System) (New)

*Time : 3 Hours] Instructions to the candidates:* 

- 1) Attempt any FIVE questions of the following.
- 2) Figures to the right indicate full marks.
- 3) Use of non-scientific/non-programmable calculator is allowed.

#### *Q1*) Attempt the following:

- a) Explain sampling and quantization of digital image. [4]
- b) Write a short note on Digital image water marking. [3]
- c) Define the following:
  - i) Pepper noise
  - ii) Salt noise
  - iii) White noise
- **Q2)** a) Consider image segment as shown below. Compute length of the shortest-4, shortest-8 and shortest-m paths between pixels p & q where  $V = \{1, 2\}$ .[4]

| 4  | 2 | 3 | 2q |
|----|---|---|----|
| 3  | 3 | 1 | 3  |
| 2  | 3 | 2 | 2  |
| p2 | 1 | 2 | 3  |

- b) Explain 'contrast stretching'.
- c) What is threshold? Explain how to obtain the threshold for image segmentation. [3]
- Q3) a) Justify the statement: Laplacian is better than gradient for detection of edges. [4]
  b) Explain 'Aliasing'. [3]
  - c) Explain image negatives with its applications. [3]

*P.T.O*.

[Total No. of Pages : 2

**SEAT No. :** 

[3]

[3]

[Max. Marks : 50

- Discuss the RGB model for color image processing. [4] **Q4)** a)
  - Show that Erosion and dilation are duals of each other. b) [3]

[3]

[3]

[3]

- Explain coding redundancy. c)
- Consider a 3-bit image (L = 8) of size  $64 \times 64$ , which has intensity **Q5)** a) distribution shown below: [4]

| $r_{k}$ : intensity    | $n_{k}$ : no. of pixels |
|------------------------|-------------------------|
| $r_0 = 0$              | x 790                   |
| $r_1 = 1$              | 1023                    |
| $r_{2} = 2$            | 850                     |
| $r_{3}^{2} = 3$        | 656                     |
| $r_{4} = 4$            | 329                     |
| $r_{5} = 5$            | 245                     |
| $r_{6} = 6$            | 122                     |
| $r_7 = 7$              | 81                      |
| v:                     |                         |
| Histogram for 3-bit im | age                     |
| Equalized histogram    |                         |

Draw:

- Histogram for 3-bit image i)
- Equalized histogram ii)
- If all the pixels in an image are shuffled, will there be any change in **b**) histogram? [3]
- Explain with suitable example the spatial filter operation for smoothing c) and image. [3]
- Explain the neccessity of image processing with suitable example. **06)** a) [4]
  - Write a note on image enhancement techniques. **b**)
  - Explain: c)
    - Unit impulse i)
    - Perimeter of region ii)
- How do you filter an image in the frequency domain? Give its flow-**Q**7) a) chart. [5]
  - Explain various components of a general purpose image processing b) system. [5]
- Explain basic principles of detecting following in the images with suitable **Q8)** a) example. [5]
  - Points i)
  - ii) Lines
  - Explain Morphological operation 'Opening' with suitable example. [5] b)

[5442]-501

SEAT No. :

[Total No. of Pages : 2

## P1326

#### [5442]-502

#### M.Sc.

## INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATIONS MIM - 502 : Dot Net Technologies (2013 Pattern) (Credit System) (Semester - V)

| Time       | 2:3.<br>        | Hours]<br>ons to the candidates:                                                           | [Max. Marks : 50 |
|------------|-----------------|--------------------------------------------------------------------------------------------|------------------|
| 111511     | ucu<br>1)<br>2) | Attempt any five out of eight questions.<br>Figures to the right side indicate full marks. |                  |
| Q1)        | At              | tempt the following:                                                                       |                  |
|            | a)              | What are the HTML server controls in ASP.NET?                                              | [4]              |
|            | b)              | What are namespaces, and how are they used?                                                | [4]              |
|            | c)              | Define MVC.                                                                                | [2]              |
| Q2)        | At              | tempt the following:                                                                       |                  |
|            | a)              | Write a short note on CLR.                                                                 | [4]              |
|            | b)              | Explain the use of virtual, sealed, override, and abstract.                                | [4]              |
|            | c)              | What is the difference between ASP.NET WebForms MVC?                                       | and ASP.NET [2]  |
| <i>Q3)</i> | At              | tempt the following:                                                                       |                  |
| ~ /        | a)              | Explain the advantages of ASP.NET.                                                         | [4]              |
|            | b)              | What are the features of C#?                                                               | [4]              |
|            | c)              | What is an internal modifier?                                                              | [2]              |
| Q4)        | At              | tempt the following:                                                                       |                  |
|            | a)              | Explain Exception handling in C#.Net.                                                      | [4]              |
|            | b)              | Describe Connection object in ADO.NET.                                                     | [4]              |
|            | c)              | What is the difference between an event and a delegate?                                    | [2]              |
|            |                 |                                                                                            | DTO              |

*P.T.O.* 

- *Q5*) Attempt the following:
  - a) What are advantages of using Master Page in ASP.NET. [4]
  - b) Differentiate between DataSet and DataReader. [4]
  - c) What is the difference between const and readonly in C#.NET? [2]
- *Q6)* Attempt the following:
  - a) Differentiate between compile time polymorphism and runtime polymorphism. [4]
  - b) Define garbage collection in C#. How many types of generations are there in a garbage collector? [4]
  - c) How to add a ReadOnly property in C#.NET. Give a code as an example. [2]
- *Q7*) Attempt the following:
  - a) Write a C# program to demonstrate the use of single level inheritance.[5]
  - b) Write a C# program to create multicast delegate to hold the reference of add() and mul() methods whose return type is void and takes two parameters of integer types. [5]
- **Q8)** Attempt the following:
  - a) Write a ASP.NET program to demonstrate the use of server control Radio Button. Create a group of two radio buttons and labeled it with Male and Female. Handle appropriate event to display which element has selected.
  - b) Write a short note on advantages and disadvantages of using Session State in ASP.Net. [5]

#### ♦♦♦

**P1327** 

SEAT No. :

[Total No. of Pages : 1

#### [5442]- 503

## M.Sc. -Tech.

### INDUSTRIALMATHEMATICS WITH COMPUTER APPLICATIONS MIM- 503 : UNIX (2013 Pattern) (Semester - V)

| Time : 3 Hours           | ]<br>the candidates:                                     | [Max. Marks : 50   |
|--------------------------|----------------------------------------------------------|--------------------|
| 1) Attem                 | ppt any five questions of the following.                 |                    |
| 2) Figur                 | res to the right indicate full marks.                    |                    |
| <i>Q1</i> ) a) Exp       | plain xalloc() system in detail.                         | [5]                |
| b) Wh                    | at is signal ? How signal handling is done in UNIX.      | [5]                |
| <i>Q2</i> ) a) Wh        | at is zombie state of process ? Explain exit() system    | n call. <b>[5]</b> |
| b) Wri                   | te and explain fork system call.                         | [5]                |
| <b>Q3</b> ) a) Wri       | te a note on structure of buffer pool.                   | [3]                |
| b) Exp                   | blain different services of UNIX operating system.       | [3]                |
| c) Exp                   | blain high-level architecture of UNIX system.            | [4]                |
| <b>Q4</b> ) a) Exp       | blain Block diagram of UNIX system kernel.               | [5]                |
| b) Wh                    | at are the characteristics of UNIX file system?          | [3]                |
| c) Wh                    | en processes go into sleep state and how wakeup us       | sed ? [2]          |
| <b>Q5</b> ) a) Wri       | te a Note on Race Condition.                             | [5]                |
| b) Exp                   | blain Block Read Ahead algorithm.                        | [5]                |
| <b><i>Q6</i></b> ) a) Wh | at is inode ? Explain fields of Disk inode.              | [4]                |
| b) Wh                    | at is in-core inode? What are additional fields it co    | ontains over the   |
| Dis                      | k inode ?                                                | [4]                |
| c) Def                   | ine: i) Process ii) Kernel                               | [2]                |
| <b>Q7</b> ) a) Exp       | blain exec () system call.                               | [5]                |
| b) Wri                   | te a note on pipes.                                      | [5]                |
| <b>Q8</b> ) a) Exp       | blain DUP system call.                                   | [4]                |
| b) Wh                    | at is use if link and Unlink system call and what are in | nput parameters    |
| for                      | this system call.                                        | [3]                |
| c) Wri                   | te a note on file system layout.                         | [3]                |

#### \*\*

P1328

## [5442]-504 M.Sc. (IMCA) MATHEMATICS MIM : 504 - Statistical Methods (2013 Pattern) (Semester - V)

Time : 3Hours]

[Max. Marks : 50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to right indicate full marks.
- 3) Use of scientific calculator is allowed.
- Q1) a) A hospital switchboard receives an average of 4 emergency calls in a 10 minute interval. What is the probability that there are exactly 3 emergency calls in a 10 minute interval?
   [4]
  - b) The distribution function of a random variable X is given by,

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 2x^2 & \text{if } 0 \le x \le \frac{1}{2}\\ 4x - 2x^2 - 1 & \text{if } \frac{1}{2} \le x \le 1\\ 1 & \text{if } x > 1 \end{cases}$$

find p.d.f. of X.

- c) Write any four properties of regression coefficient. [2]
- Derive an expression for mean of Poisson Distribution. *Q2*) a) [4] If p.d.f. of random variable X is given by, b)  $f(x) = kx^3, \quad 0 \le x < 1$ 0 =, otherwise then find mean and variance of X. [4] Define 'Mutually Exclusive Event'. c) [2] State and prove 'Lack of Memory Property'. *Q3*) a) [4] In a shooting competition, the probability of a man hitting a target is  $\frac{1}{5}$ . b)

If he hits the target for 5 times then what is the probability of hitting the target only two times.? [4]
c) If b<sub>xy</sub> = 0.2 and b<sub>yx</sub> = 0.3 find the value of correlation coefficient. [2]

*P.T.O.* 

[4]

SEAT No. :

[Total No. of Pages : 2

- Q4) a) Obtain the expected value of number of heads when three fair coins are tossed simultaneously. [4]
  - b) Obtain mean and variance of Binomial Distribution. [4]
  - c) If P(A) = 0.6, P(B) = 0.5,  $P(A \cap B) = 0.3$  then find  $P(A' \cap B)$ . [2]
- Q5) a) The letters of the word 'Seminar' are arranged at random. Find the probability that the vowels occupy the even places. [4]
  - b) Write definition and properties of normal distribution. [4]
  - c) If a pair of unbiased coins is tossed then find the probability of occurrence of single head. [2]

#### *Q6*) a) Consider the following pmf of random variable X

| Х      | 0   | 1   | 2      | 3       | 4 |     |
|--------|-----|-----|--------|---------|---|-----|
| P(X=x) | k   | 3k  | 5k     | 2k      | k |     |
| Find   | i)  | The | e valu | le of l | k | C   |
|        | ii) | Р(У | K < 3) |         |   | [4] |

- b) Obtain the formula for mean and variance of Exponential Distribution.[4]
- c) Suppose A and B are two events defined on  $\Omega$ . If P(A) = 0.8, P(A $\cup$ B) = 0.9 & P(B) = x then find value of x if A and B are mutually exclusive. [2]
- Q7) a) The mean of a normal Distribution is 60 and 6% of the values are greater than 70. Find the standard deviation. [5]
  - b) Let X~U (a,b). Derive the formula for mean, variance and standard deviation of X. [5]
- **Q8)** a) Explain chi-square test for goodness of fit. [5]
  - b) Explain the method of test for independence of Attribute. [5]

## $\mathbf{OOOO}$

#### SEAT No. :

[Total No. of Pages : 3

[Max. Marks: 50

#### P1329

## [5442]-505

## M.Sc. - III

#### INDUSTRIAL MATHEMATICS WITH COMPUTER APPLICATIONS MIM - 505 : Cryptography (2013 Pattern) (Semester - V)

*Time : 3 Hours] Instructions to the candidates:* 

- 1) Attempt any five out of eight questions.
- 2) Figures to the right indicate full marks.
- 3) Scientific non-programmable calculator is allowed.

**Q1**) Attempt the following:

- a) Write a note on mono alphabetic substitution ciphers. [4]
- b) Consider English language and associated alphabets with the mapping  $A \Leftrightarrow 0, B \Leftrightarrow 1..., Z \Leftrightarrow 25$ . Encrypt the plain text P(T) = CRYPTOGRAPHY using shift cipher with a value K = 3. [3]
- c) Find gcd(a,b)=d and express 'd' as a linear combination of 'a' and 'b' where
   [3]
  - a = 586b = 139
- *Q2*) Attempt the following:
  - a) Find the smallest positive integer 'x' such that [4]
    - $x \equiv 5 \pmod{7}$  $x \equiv 7 \pmod{11}$
    - $x \equiv 3 \pmod{13}$
  - b) What are the valid choices for 'a' and thus the size of the key space for an affine cipher that is based on the English language and associated alphabet? [3]
  - c) Consider English language and associated alphabet with the mapping  $A \Leftrightarrow 0, B \Leftrightarrow 1, \dots, Z \Leftrightarrow 25$ . Encrypt the plain text P(T) = MEET ME, using multiplicative cipher, with K = 3. [3]

*P.T.O.* 

- *Q3*) Attempt the following:
  - Compute the affine cipher key K = (a,b), if the letter 'A' represented as a) 'zero', maps to 'J', represented as 'nine' and the letter 'B' represented as 'one', maps the letter 'O' represented as 'fourteen'. [4]
  - Use keyword cipher to encrypt the word 'ALGEBRA' where b) keyword is 'mathematics' and key letter is 'V' [3]
  - Decrypt the following message using permutation cipher ' $\sigma$ ', where c)

 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 1 & 2 & 6 & 5 \end{pmatrix}$ 

Message 'agsuirewsste'.

*Q4*) Attempt the following:

5 Write a note on Hill's cipher. a) [4] Explain why the multiplicative cipher of any key associates plain text 'm' b) to the Cipher text M? [3] Explain in brief the block ciphers and stream ciphers. [3] c)

[3]

**Q5**) Attempt the following:

| a) | Explain | in she | ort the 'Diffie | e-Helman' k | ev exchange algorithm. | [4]  |
|----|---------|--------|-----------------|-------------|------------------------|------|
| ,  |         |        |                 |             |                        | L "J |

- Explain the working of symmetric key Cryptosystem. [3] b)
- Define elliptic curve and check whether the point (7, 9) is a point on c) elliptic curve  $y^2 = x^3 + x + 6 \pmod{11}$ . [3]

*Q6*) Attempt the following:

| a) | Write a note on DES, the data encryption standards. | [4] |
|----|-----------------------------------------------------|-----|
| b) | Write a note on digital signature.                  | [3] |
| c) | Explain the concept of one-time pad.                | [3] |

- *Q7*) Attempt the following:
  - a) Define primitive root and check whether 2 is primitive root modulo 17 or not? [5]
  - b) Using RSA digital signature scheme with the parameters p = 2, q = 5 and a = 3, sign the message x = 3 and then verify the signature. [5]
- *Q8*) Attempt the following:
  - a) Define 'discrete logarithm'; and explain what is discrete logarithm problem. [5]
  - b) Show that the pseudo-random sequence generated by the function  $f(x_i) = (x_i^2 + 9) \mod 19$ .

Identify the  $\mu$ -tail and the  $\lambda$ -cycle and  $x_{\mu}$  where the collision occurs, if the initial point  $x_0 = 5$ . [5]

 $\mathfrak{RRR}$