(b) Prove the recurrence relation:

$$T_{n+1}(x) = 2xT_{n}(x) - T_{n-1}(x)$$
 for the Chebyshev polynomials. (5)

4. (a) Decompose the matrix $A = \begin{bmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix}$ into the form LU where L is a unit lower triangular and U is an upper triangular matrix. (10)

(b) Use the factors obtained above to solve the system

$$AX = B \text{ where } B = \begin{bmatrix} 4 \\ 8 \\ 10 \end{bmatrix}. \tag{5}$$

5. (a) Given

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y - x$$

Where y(0) = 2. Find y(0.2) with h = 0.1 using Runge-Kutta second order formula up to three decimal places. (8)

(b) Solve the boundary value problem y''(x) = y(x); y(0) = 0, y(1) = 1.1752 by the shooting method,, taking the two initial approximations for y'(0) as 0.7 and 0.8 and h = 0.5. Perform only first iteration. (7)

[This question paper contains 4 printed pages.]

O9.01.24(M)
Your Roll No.....

Sr. No. of Question paper: 1708

G

Unique Paper Code : 2223012001

Name of the Paper : Numerical Analysis (DSE)

Name of the Course : B.Sc. (Hons.) Physics

Semester : III

Duration: 2 Hours Maximum Marks: 60

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt total **four** questions in all with question no. 1 being compulsory.
- 3. All questions carry equal marks.
- 4. Scientific non-programmable calculators are allowed.

1. All questions are compulsory $(5\times3=15)$

(a) Find the relative error in

$$u = \frac{5xy^2}{z^3}$$

1708

3

at x = y = z = 1 when the relative error in each of x, y, z is 0.01.

- (b) Given a vector A = [-1, 4, 2] calculate the 1-norm, 2-norm and the ∞ -norm.
- (c) Find the eigen values and corresponding normalised eigen vectors of the matrix:

$$\begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix}$$

(d) Evaluate the following integral using Trapezoidal Rule with n = 4 correct to three decimal places.

$$\int_{0}^{1} x^{2} dx$$

(e) Given $\frac{dy}{dx} = x^2$ with y(0) = 1.

Find the value of y(1) using Euler's method with h = 0.5.

2. (a) Using Gauss Elimination method, solve the following system of equations:

$$2x + 2y + z = 6$$

 $4x + 2y + 3z = 4$
 $x - y + z = 0$ (8)

(b) Using power method determine the largest eigenvalue and the corresponding eigenvector of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Let the initial eigenvector be

$$X^0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Perform 3 iterations.

(7)

3. (a) Find the value of f(8) using Newton's *Divided Difference Method* for the following dataset.

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

(10)