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(b) Let g: R > R be defined by

x? sin {lJ for x#0
g(x)= X
0 for x=0
Show that g is differentiable for all x € R.

Also, show that the derivative g’ is not continuous
at x = 0. (6)

(c) Suppose that f is continuous on a closed interval
I = [a,b], and that f has a derivative in the open
interval (a, b). Prove that there exists at least one
point ¢ in (a, b) such that f{b) — f(a) = £ (c)(b-a).

Suppose that f: [0, 2] — R is continuous on [0,2]
and differentiable on (0,2) and that f(0) = 0,
f(2) = 1. Show that there exists ¢ € (0,2) such
Pie) = 4 (6)

6. (a) Find the points of relative extrema of the function
f) =1~ (x - 1P, for 02252, (6)

(b) Let I be an open interval and let f: I = R has a
second derivative on I. Then show that f is a
convex function on I if and only if f’(x) > 0 for
all x e L. (6)

(c) Obtain Taylor’s series expansion for the function
f(x) = sinx, ¥x < R. (6)

(1000)
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Instructions for Candidates
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of this question paper.

2. Attempt any two parts from each question.

3. All questions are compulsory.

1. (a) Let AcR and c € R be a cluster point of A and
f: A > R, then define limit of function f at ¢. Use

€ — 8 definition to show that lim =—1. (6)

x—=2]1—-x

(b) Let f: R — R be defined as f(x)={~ . *  rational |
0 if x is irrational

PLT.0.
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Show that f has a limit at x =0. Use sequential
criterion to show that f does not have a limit at ¢
if e 0. (6)

x—0 2

) 1 ;
(¢) Show that lim cos[—} does not exist in R but
X

lim x2 cos[%) =0. (6)

x—0 X

2. (a)Let AcR, let f: A>R and g: A—-R and
c e R be a cluster point of A. Show that if

limf(x)=L and limg(x)=M then lim (fg)(x)=LM.

X—C X—C X—=C

(6)

(b) Evaluate the limit lim ——. (6)

i—ol+x—1

(c) Let AcR, f: A—> R and ¢ € R. Show that the
following conditions are equivalent-

(i) f is continuous at c.

(i) For every sequence {(x_) in A that
converges to c, the sequence (f(x))
converges to f(c). (6)

3. (a)Let A, BcR andletf: A>Rand g=B—->R
be functions such that f(A) < B. if f is continuous
at a point ¢ € A and g is continuous at b € B,

4350 3

then show that the composition function g°f:

A = R is continuous at c. Also, show that the
function f(x) = cos(1 +x?) is continuous on R.

(772)

(b) State and prove Maximum-Minimum Theorem for

continuous functions on a closed and bounded

interval. (7'4)

(¢) State Bolzano’s Intermediate value theorem. Show
that every polynomial of odd degree with real
coefficients has at least one real root. (7Y2)

4, (a)Let AcR and f: A—> R. Show that if f is
continuous at ¢ € A then |f] is continuous at ¢. Is
the converse true? Justify your answer. (6)

(b) Let I = [a,b] and f: I— R. Show that if T is
continuous on I then it is uniformly continuous on

L (6)

(¢) Show that f(x) = sin x is uniformly continuous on
1

R and the function g(x) = sin(—), x # 0 is not
X

uniformly continuous on (0, ). (6)

5. (a)Let IcR be an interval, let ¢ € I, and let
f: 1T >R and g: 1> R be functions that are
differentiable at c¢. Prove that the function fg is
differentiable at ¢, and (fg)’ = f'(c)g(c) +
f(c)g'(c). (6)
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