(b) Let $g: \mathbb{R} \to \mathbb{R}$ be defined by

$$g(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$

Show that g is differentiable for all $x \in \mathbb{R}$.

Also, show that the derivative g' is not continuous at x = 0. (6)

(c) Suppose that f is continuous on a closed interval I = [a, b], and that f has a derivative in the open interval (a, b). Prove that there exists at least one point c in (a, b) such that f(b) - f(a) = f'(c)(b - a).

Suppose that $f: [0, 2] \to \mathbb{R}$ is continuous on [0,2]and differentiable on (0,2) and that f(0) = 0, f(2) = 1. Show that there exists $c_1 \in (0,2)$ such $f'(c_1) = 1/2.$ (6)

- (a) Find the points of relative extrema of the function $f(x) = 1 - (x - 1)^{2/3}$, for $0 \le x \le 2$. (6)
 - (b) Let I be an open interval and let $f: I \to \mathbb{R}$ has a second derivative on I. Then show that f is a convex function on I if and only if $f''(x) \ge 0$ for all $x \in I$. (6)
 - (c) Obtain Taylor's series expansion for the function $f(x) = \sin x, \ \forall x \leq \mathbb{R}.$ (6)

(1000)

[This question paper contains 4 printed pages.]

28.12.2023 (M) Your Roll No....

Sr. No. of Question Paper: 4350

G

Unique Paper Code

: 32351301

Name of the Paper

: Theory of Real Functions

Name of the Course

: B.Sc. (H) Mathematics

(LOCF)

Semester

: III

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- Attempt any two parts from each question.
- All questions are compulsory.
- (a) Let $A \subseteq \mathbb{R}$ and $c \in \mathbb{R}$ be a cluster point of A and $f: A \to \mathbb{R}$, then define limit of function f at c. Use
 - $\in -\delta$ definition to show that $\lim_{x\to 2} \frac{1}{1-x} = -1$. (6)
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$

Show that f has a limit at x = 0. Use sequential criterion to show that f does not have a limit at c if $c \neq 0$.

(c) Show that $\lim_{x\to 0} \cos\left(\frac{1}{x^2}\right)$ does not exist in \mathbb{R} but $\lim_{x\to 0} x^2 \cos\left(\frac{1}{x^2}\right) = 0.$

(a) Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ and $g: A \to \mathbb{R}$ and $c \in \mathbb{R}$ be a cluster point of A. Show that if

 $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$ then $\lim_{x\to c} (fg)(x) = LM$.

(6)

- (b) Evaluate the limit $\lim_{x\to 1+} \frac{x}{x-1}$. (6)
- (c) Let $A \subseteq \mathbb{R}$, f: $A \to \mathbb{R}$ and $c \in \mathbb{R}$. Show that the following conditions are equivalent-
 - (i) f is continuous at c.
 - (ii) For every sequence $\langle x_n \rangle$ in A that converges to c, the sequence $\langle f(x_n) \rangle$ converges to f(c). (6)
- 3. (a) Let A, $B \subseteq \mathbb{R}$ and let f: $A \to \mathbb{R}$ and $g = B \to \mathbb{R}$ be functions such that $f(A) \subseteq B$. if f is continuous at a point $c \in A$ and g is continuous at $b \in B$,

then show that the composition function g of: $A \to \mathbb{R}$ is continuous at c. Also, show that the function $f(x) = \cos(1 + x^2)$ is continuous on \mathbb{R} . $(7\frac{1}{2})$

3

- (b) State and prove Maximum-Minimum Theorem for continuous functions on a closed and bounded $(7\frac{1}{2})$ interval.
- (c) State Bolzano's Intermediate value theorem. Show that every polynomial of odd degree with real coefficients has at least one real root. $(7\frac{1}{2})$
- (a) Let $A \subseteq \mathbb{R}$ and $f: A \to \mathbb{R}$. Show that if f is continuous at $c \in A$ then |f| is continuous at c. Is the converse true? Justify your answer. (6)
 - (b) Let I = [a, b] and $f: I \to \mathbb{R}$. Show that if f is continuous on I then it is uniformly continuous on (6)I.
 - (c) Show that $f(x) = \sin x$ is uniformly continuous on \mathbb{R} and the function $g(x) = \sin\left(\frac{1}{x}\right)$, $x \neq 0$ is not uniformly continuous on $(0, \infty)$. (6)
- (a) Let $I \subseteq \mathbb{R}$ be an interval, let $c \in I$, and let $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ be functions that are differentiable at c. Prove that the function f g is differentiable at c, and (fg)' = f'(c)g(c) +(6)f(c)g'(c).

P.T.O.