4404

8

(c) Suppose that ϕ is a homorphism from U/(30) to U(30) and that $\text{Ker}\phi = \{1,11\}$. If $\phi(7) = 7$, find all the elements of U(30) that are mapped to 7. State and prove the result used.

 $(2 \times 6.5 = 13)$

[This question above contains 8 printed pages.]

02.01.2024(M)

Your Roll No.....

Sr. No. of Question Paper: 4404

G

Unique Paper Code

: 32351302

Name of the Paper

: Group Theory - I

Name of the Course

: B.Sc. (Hons) Mathematics

Semester

: III

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions are compulsory.
- 3. Attempt any two parts from each question from Q2 to Q6.
- 4. In the question paper, given notations have their usual meaning unless until stated otherwise.

- Give short answers to the following questions.
 Attempt any six.
 - (i) Find an element X in D_4 such that $R_{90}VXH = D'$.

Where R_{90} = Rotation of 90°, V = Flip about a vertical axis, H = Flip about a horizontal axis, D' = Flip about the other diagonal.

- (ii) Is G = {1,2,3,4,5} a group under multiplication modulo 6? In general when is G = {1,2,...,n-1};
 n ≥ 2, a group under multiplication modulo n?
 Answer both in a few lines.
- (iii) Can a non-Abelian group have a non-trivial Abelian subgroup? Give short answer in few lines.

- (b) Determine the possible homomorphisms from ${\bf Z}_{20}$ to ${\bf Z}_{10}.$ Also, find which of the homomorphisms are onto.
- (c) Prove or disprove the following by justifying them:
 - (i) $U(8) \approx Q_8$, the group of Quaternions.
 - (ii) $U(20) \approx D_4$

(iii)
$$(Q, +) \approx (Z, +)$$
 $(2 \times 6 = 12)$

- (a) If φ is an isomorphism from a group G onto a group Ḡ, then prove that
 |φ(g)| = |g| for all g ∈ G.
 - (b) Let $\mathbb C$ be the set of complex numbers and
 - $M = \{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \}$. Prove that \mathbb{C} and M are isomorphic under addition and that \mathbb{C}^* and M^* , the non-zero elements of M, are isomorphic under multiplication.

- (b) (i) Let $H = \{I, (12)(34)\}$, $G = A_4$. Show that H is not a normal subgroup of G.
 - (ii) Is the order of a factor group of an infinite group is infinite? Give example or counter example to support your answer.

(3+3.5=6.5)

- (c) (i) Prove that Z (G), the centre of a group G, is always a normal subgroup of G.
 - (ii) Let G = Z, the group of integers under addition. Write all the elements of factor group Z/20Z of Z. Is this factor group cyclic?
 Give explanation in support of your answer.
 (3+3.5=6.5)
- 5. (a) If H is a subgroup of a group G and K is a normal subgroup of G, then prove that $H/(H \cap K)$ is isomorphic to HK/K.

- (iv) Let G be a group such that $x = x^{-1}$, for all $x \in G$. Prove that G is Abelian.
- (v) Give an example of a non-cyclic group, whose every proper subgroup is cyclic.
- (vi) Prove that a group of order 4 is Abelian.
- (vii) List all the generators of (Z, +), Z_7 and Z_8 .
- (viii) For any integer n > 2, show that there are at least two elements in U(n) that satisfy $x^2 = 1$. $(6 \times 2 = 12)$
- 2. (a) Prove that

$$G = \left\{ \begin{bmatrix} \cos(a) & -\sin(a) \\ \sin(a) & \cos(a) \end{bmatrix} : a \in \mathbb{R} \right\}$$

is an infinite Abelian group under matrix multiplication.

(b) Define a cyclic subgroup of a group. Is it Abelian or Non-Abelian? Justify your answer. Prove that

$$H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} : n \in Z \right\}$$

is a cyclic subgroup of $GL(2, \mathbb{R})$.

- (c) Prove that the subgroup of a cyclic group is cyclic. Find the smallest subgroup of (Z, +) containing 8 and 14. $(2\times6.5=13)$
- 3. (a) Prove that the order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles.

(6)

(b) (i) Show that S_7 has an element of order 12. Find one such element.

(ii) Give two reasons why the set of odd permutations in S_n is not a subgroup.

5

(3+3=6)

- (c) (i) Let G = U (24), $H = \{1,7\}$. Write all the distinct left cosets of H in G.
 - (ii) Prove that a group of order 98 can have at the most one subgroup of order 49.

(3+3=6)

4. (a) (i) Let H be a subgroup of G and a and b belongs to G. Then prove that

$$aH = bH \text{ iff } a^{-1}b \in H$$

(ii) State Lagrange's Theorem for finite groups and prove that every group of prime order is cyclic. (3+3.5=6.5)

P.T.O.