(vi) V = Flip about vertical axis.

(vii) D = Flip about the main diagonal.

(viii) D1 = Flip about the other diagonal.

Identify the motion that can act as identity under the composition of two motions. Further, find out the inverse of each motion. (3.5+1+3)

- (b) Show that the set $G = (f_1, f_2, f_3, f_4)$, is a group under the composition of functions defined as, fog(x) = f(g(x)) for f, g in G, where $f_1(x) = x$, $f_2(x) = -x$, $f_3(x) = 1/x$, $f_4(x) = -1/x$ for all non-zero real number x. (7.5)
- (c) Define the inverse of an element in a group G. Show that $(a.b)^{-1} = b^{-1} \cdot a^{-1}$ for all a, b in G. Further show that if $(a.b)^{-1} = a^{-1} \cdot b^{-1}$ for all a, b in G, then G is Abelian. (4+3.5)
- 6. (a) Define Z(G), the center of a group G. Show that Z(G) is a subgroup of G. (2+5.5)
 - (b) Define order of an element a in group G. Further show that if order of a is n, and $a^m = e$, where m is an integer, then n divides m. (2+5.5)
 - (c) Find the generators of the cyclic group Z_{30} . Further describe all the subgroups of Z_{30} and find the generators of the subgroup of order 15 in Z_{30} .

(2+3.5+2)

(500)

[This question paper contains 4 printed pages.]

28.12.2023(M) Your Roll No....

Sr. No. of Question Paper: 1553

G

Unique Paper Code :

: 2352011101

Name of the Paper

: DSC-1: Algebra

Name of the Course

: B.Sc. (H) Mathematics,

UGCF-2022

Semester

: I

Duration: 3 Hours

Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions are compulsory and carry equal marks.
- 3. Attempt any two parts from each question.
- 1. (a) (i) Find a cubic equation with rational coefficients having the roots

 $\frac{1}{2}$, $\frac{1}{2}$ + $\sqrt{2}$, stating the result used.

(ii) Find an upper limit to the roots of

$$x^5 + 4x^4 - 7x^2 - 40x + 1 = 0.$$
 (4+3.5)

P.T.O.

(b) Find all the integral roots of

 $x^4 + 4x^3 + 8x + 32 = 0. (7.5)$

(c) Find all the rational roots of

 $y^4 - \frac{40}{3}y^3 + \frac{130}{3}y^2 - 40y + 9 = 0.$ (7.5)

2. (a) Express arg (\overline{z}) and arg (-z) in terms of arg(z). Find the geometric image for the complex number

z, such that $\arg(-z) \in \left(\frac{\pi}{6}, \frac{\pi}{3}\right)$. (2+2+3.5)

- (b) Find |z|, arg z, Arg z, arg \overline{z} , arg(-z) for z = (1-i)(6+6i) (7.5)
- (c) Find the cube roots of z = 1 + i and represent them geometrically to show that they lie on a circle of radius $(2)^{1/6}$. (7.5)
- 3. (a) Solve $y^3 15y 126 = 0$ using Cardan's method. (7.5)
 - (b) Let n be a natural number. Given n consecutive integers, a, a + 1, a + 2, ..., a + (n-1), show that one of them is divisible by n. (7.5)
 - (c) Let a and b be two integers such that gcd(a, b) = g. Show that there exists integers m and n such that g = ma + nb. (7.5)

- 4. (a) Let a be an integer such that a is not divisible by
 7. Show that a ≡ 5^k (mod 7) for some integer k.
 (7.5)
 - (b) Let a and b be two integers such that 3 divides $(a^2 + b^2)$. Show that 3 divides a and b both. (7.5)

(c) Solve the following pair of congruences, if possible. If no solution exists, explain why? (7.5) $x + 5y \equiv 3 \pmod{9}$ $4x + 5y \equiv 1 \pmod{9}$

5. (a) Consider a square with four corners labelled as follows:

P W G B

Describe the following motions graphically:

- (i) $R_0 = Rotation of 0 degree.$
- (ii) R_{90} = Rotation of 90 degrees counterclockwise.
- (iii) R₁₈₀ = Rotation of 180 degrees counterclockwise.
- (iv) R₂₇₀ = Rotation of 270 degrees counterclockwise.
- (v) H = Flip about horizontal axis.