(ख) एक दुर्लभ हीरे का प्रारंभिक मूल्य क्या है।

$$F(t) = 25000(1.75)^{4\sqrt{t}}$$

यदि ब्याज की दर लगातार संयोजित होती है और 7% है, तो पेंटिंग को कितने समय तक रखा जाना चाहिए?

[This question paper contains 16 printed pages.]

01.01.2024(M) Your Roll No....

Sr. No. of Ouestion Paper: 591

G

Unique Paper Code

: 2272101102

Name of the Paper

: Introductory Mathematical

Methods for Economics

Name of the Course

: B.A. (Hons) Economics -

DSC-2

Semester

: I

Duration ; 3 Hours

Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Answers may be written in English or Hindi, but same medium should be used throughout the paper.
- 3. There are 3 sections in all and all sections are compulsory.
- 4. All parts of a cuestion must be answered together.
- 5. Use of simple calculator is allowed.
- 6. PwD marked questions are alternatives to be attempted only by PwD students.

छात्रों के लिए निर्देश

591

- इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनक्रमांक लिखिए।
- इस प्रश्न पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।
- कुल 3 खंड हैं और सभी खंड अनिवार्य हैं।
- सभी प्रश्नों के भागों का उत्तर एक साथ दिया जाना चाहिए।
- साधारण कैलकुलेटर के उपयोग की अनुमति है।
- PwD चिह्नित प्रश्न केवल PwD छात्रों द्वारा हल किए जाने वाले विकल्प हें।

Section A (खंड क)

Attempt any Four $(10 \times 4 = 40)$

किन्हीं चार प्रश्नों का उत्तर दीजिए।

(a) For the following function

$$f(x) = \ln(4 - x^2)$$

- (i) Find the Domain
- (ii) Find the Asymptotes

- (iv) At what time is the population rising most rapidly.
- (b) The initial value of a rare diamond is given as

$$F(t) = 25000(1.75)^{4\sqrt{t}}$$

If the rate of interest is compounded continuously and is 7%, how long should the painting be held? (5+5)

(क) किसी देश की जनसंख्या समय के निम्नलिखित फलन के अनुसार बढ़ती है, t;

$$P(t) = \frac{a}{b + e^{-at}}$$

- (i) t=0 होने पर dP/dt ज्ञात कीजिये।
- (ii) जनसंख्या की वृद्धि की आनुपातिक दर ज्ञात कीजिये।
- (iii) दर्शाएं कि जनसंख्या का एक सीमित मान है और इसका मान ज्ञात कीजिए।
- (iv) किस समय जनसंख्या सबसे तेजी से बढ़ रही है।

निम्नलिखित फलन के लिए

$$f(x) = \frac{3}{x^4 - x^2 + 1}$$

निर्धारित कीजिए:

- (क) वे अंतराल जिनके लिए फलन बढ़ रहा है/घट रहा है।
- (ख) स्थानीय उच्चिष्ट और निम्निष्ट के बिंदु ज्ञात कीजिए।
- (ग) वैश्विक उच्चिष्ट और निम्निष्ट का पता लगाएं।
- 13. (a) The population of a country grows according to the following function of time, t;

$$P(t) = \frac{a}{b + e^{-at}}$$

- (i) Find dP/dt when t=0.
- (ii) Find the proportional rate of growth of the population.
- (iii) Show that the population has a limiting value and find its value.

- (b) Given g(2) = -4 and $g'(x) = \sqrt{(x^2 + 5)}$ for all x. use linear approximation to estimate g(2.05).
- (क) निम्नलिखित फलन के लिए

$$f(x) = \ln(4 - x^2)$$

- (i) डोमेन ज्ञात कीजिए।
- (ii) अनतस्पर्शी रेखा ज्ञात कीजिए।
- (ख) दिया गया g(2) = -4 और $g'(x) = \sqrt{\left(x^2 5\right)}$ सभी x के लिए। अनुमान लगाने के लिए रैखिक सन्निकटन का उपयोग कीजिए g(2.05)।
- 2. (a) Find the limit

$$\lim_{x \to \infty} \left[x \ln \left(1 - \frac{2}{3x} \right) \right]$$

Is the function continuous everywhere?

(b) Let $f(x) = \begin{cases} x^3 - 1 & \text{for } x < 2 \\ x^2 + 3 & \text{for } x \ge 2 \end{cases}$ Find the inverse of f. (5+5)

(क) सीमा ज्ञात कीजिए:

$$\lim_{x \to \infty} \left[x \ln \left(1 - \frac{2}{3x} \right) \right]$$

क्या फलन हर जगह निरंतर है?

(ख) Let $f(x) = \begin{cases} x^3 - 1 & \text{for } x < 2 \\ x^2 + 3 & \text{for } x \ge 2 \end{cases}$ f का प्रतिलोम ज्ञात कीजिए।

3. (a) Check the convergence of the following:

(i)
$$\sum_{k=0}^{\infty} b \left(1 + \frac{p}{100} \right)^{-k} \quad P > 0$$

(ii)
$$\left\{ \left(-1\right)^{n-1} \left(\frac{1}{n}\right) \right\}$$

- (क) 0 पर $\ln(1+x)$ के लिए थर्ड डिग्री टेलर सूत्र ज्ञात कीजिये। इसका उपयोग $\ln(1.1)$ त्रुटि $R_3(x)$ के लिए ऊपरी सीमा का अनुमान लगाने के लिए कीजिए।
- (ख) दर्शाएं कि फलन $f(x) = x|x| \ (0,0)$ पर एक परिवर्तन बिंदु है लेकिन f''(0) मौजूद नहीं है. रेखाचित्र बनाएं।

*दिव्यांग के लिए -

(ख) दी गई मात्रा के मान का अनुमान लगाने के लिए रैखिक सन्निकटन का उपयोग कीजिए

 $(33)^{(1/5)}$

12. For the following function

$$f(x) = \frac{3}{x^4 - x^2 + 1}$$

Determine:

- (a) The intervals for which the function is increasing/decreasing.
- (b) Find the points of local maxima and minima.
- (c) Find the global maxima and minima.

(10)

(ख) यदि f और g [a, b], में निरंतर फलन हैं जैसे कि f(a) > g(a) और f(b) < g(b), (a, b) के भीतर c के अस्तित्व को इस प्रकार सिद्ध कीजिए कि f(c) = g(c)।

Section C (खंड ग)

Attempt any Two (10×2=20) किन्हीं दो का उत्तर दीजिए।

- 11. (a) Find the third degree taylor formula for ln(1 + x) at 0. Use this to approximate ln(1.1). Estimate the upper bound to the error $R_3(x)$.
 - (b) Show that the function f(x) = x|x| has an inflection point at (0,0) but f''(0) does not exist. Draw the graph. (5+5)

*For PWD-

(b) Use linear approximation to estimate the value of the given quantity

 $(33)^{(1/5)}$

(b) Solve the following Inequality

$$\frac{\frac{1}{y} - 1}{\frac{1}{y} + 1} \ge 1 \tag{5+5}$$

(क) निम्नलिखित के अभिसरण की जाँच कीजिए:

(i)
$$\sum_{k=0}^{\infty} b \left(1 + \frac{p}{100} \right)^{-k}$$
 $P > 0$

(ii)
$$\left\{ \left(-1\right)^{n-1} \left(\frac{1}{n}\right) \right\}$$

(ख) निम्नलिखित असमिका को हल कीजिए:

$$\frac{\frac{1}{y} - 1}{\frac{1}{y} + 1} \ge 1$$

4. (a) Let $A = \{x: x \in R, |x| < 1\}$ and $B = \{x: x \in R, |x-1| \ge 1\}$ where R is real numbers, If A U B = R - D, then find set D.

591

11

(b) Draw the graph of $f(x) = \ln|x-2|$ from the graph of $f(x) = \ln x$

*For PWD-

(b) For the following function, compute the derivative and the derivative of the inverse function:

$$f(x) = e^{x^{3}+1} (5+5)$$

- (क) माने $A=(x: x\in R, |x|<1)$ और $B=\{x: x\in R, |x-1|\geq 1\}$ जहाँ R वास्तविक संख्या है, यदि $A\cup B=R-D$, तो D ज्ञात कीजिए।
- (ख) $f(x) = \ln |x|$ रेखाचित्र से $f(x) = \ln |x-2|$ का रेखाचित्र बनाएं।

*दिव्यांग के लिए -

(ख) निम्नलिखित फलन के लिए, व्युत्क्रम फलन के व्युत्पन्न और व्युत्पन्न की गणना कीजिए:

$$f(x) = e^{x^3+1}$$

(ख) यह अनुमान लगाया गया है कि अब से t वर्ष बाद एक निश्चित शहर की जनसंख्या होगी

$$F(t) = 40 - \frac{8}{t+2}$$
 मिलियन.

उस राशि का अनुमान लगाने के लिए विभेदक का उपयोग कीजिए जिसके द्वारा जनसंख्या में वृद्धि होगी अगले 6 महीने।

- 10. (a) Show that the tangent to the curve $y = x^3$ at any point meets the curve again at point z where the slope is four times the slope at (c, c^3) .
 - (b) If f and g are continuous functions in [a, b] such that f(a) > g(a) and f(b) < g(b). Prove the existence of c within (a, b) such that f(c) = g(c).

(5+5)

(क) दर्शाएं कि वक्र $y=x^3$ की स्पर्शरेखा किसी भी बिंदु z पर वक्र से फिर से मिलती है जहां प्रवणता (c, c^3) पर प्रवणता चार गुना है।

(ख) α और β संख्याओं के किन मानों के लिए फलन हैं?

$$f(x) = \alpha x e^{-\beta x}$$

अधिकतम मान है f(2) = 1.

9. (a) Let α and β be positive constants. Find

$$\lim_{x\to 0^+} \frac{1-\left(1+x^{\alpha}\right)^{-\beta}}{x}$$

(b) It is estimated that t years from now the population of a certain town will be

$$F(t) = 40 - \frac{8}{t+2}$$
 million.

Use differentials to estimate the amount by which population will increase during the next 6 months.

$$(5+5)$$

(क) मान लीजिए कि α और β धनात्मक स्थिरांक हैं। ज्ञात कीजिए कि

$$\lim_{x\to 0^+} \frac{1-\left(1+x^{\alpha}\right)^{-\beta}}{x}$$

5. (a) (i) If x is restricted by the condition $0 \le x \le 2$. Find the range that y can take, given

$$y = (x - 1)^2$$

- (ii) Show that $f(x) = 20x e^{-4x}$ has exactly one real root.
- (b) (i) Show that if F-1 exists then it is unique.
 - (ii) Discuss the continuity of |x| + |x 1| in the interval [-1,2] (5+5)
- (क) (i) यदि x को 0 < x < 2 की स्थिति से प्रतिबंधित किया जाता है, तो दी गई रेंज ज्ञात कीजिए जो y ले सकता है

$$y = (x - 1)^2$$

- (ii) Show that सटीक रूप से वास्तविक वर्ग है तो $f(x)=20x-e^{-4x}$ को दर्शाएं।
- (ख) (i) यदि F^{-1} उपस्थिति है, तो यह अनूठा है इसे दर्जाए।
 - (ii) [-1,2] के अंतराल में |x|+|x-1| की निरंतरता पर चर्चा कीजिए।

9

6. (a) Solve for x

$$[\ln(x+e)]^3 - [\ln(x+e)^2]^2 = \ln(x+e) - 4$$

- (b) Suppose we know that f(x) is continuous and differentiable on the interval [-3,4], that f(-3) = 7 and that $f'(x) \le -17$. What is the largest possible value for f(4)? (5+5)
- (क) हल कीजिए x $[\ln(x+e)^{\frac{t}{3}}]^3 [\ln(x+e)^2]^2 = \ln(x+e) 4$
- (ख) मान लीजिए कि हम जानते हैं कि f(x) अंतराल [-3,4], पर निरंतर और भिन्न है, कि f(-3)=7 और वह $f'(x) \le -17$ है। f(4) का सबसे बड़ा संभव मान क्या है?

Section B (खंड ख)

Attempt any Three $(10 \times 3 = 30)$

किन्हीं तीन का उत्तर दीजिए।

7. (a) Does f have a local maxima/minima? Is it global?

Is f differentiable at 0. Identify the cusp

$$f(x) = x^{\frac{2}{3}}(2x+5)$$

- (b) Show that $Ax = e^x$ has 2 solutions when $e < A < \infty$. (5+5)
- (क) क्या f के पास स्थानीय उच्चिष्ट और निम्निष्ट है? क्या यह वैश्विक है? f 0 पर भिन्न है। शिखर को पहचानें

$$f(x) = x^{\frac{2}{3}}(2x+5)$$

- (ख) जब $e < A < \infty$ होता है तो $Ax = e^x$ के दो हल हैं इसे दर्शाएं।
- 8. (a) Find Elasticity of y with respect to x when f is given by

$$x^3y^3 + 3x^3 = 2$$

(b) For what values of the numbers α and β does the function

$$f(x) = \alpha x e^{-\beta x}$$

have the maximum value f(2) = 1. (5+5)

(क) x के सन्दर्भ में y की लोच ज्ञात कीजिये जब इसे किसके द्वारा दिया जाता है

$$x^3y^3 + 3x^3 = 2$$