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I13. An individual purchases quantities a, b, ¢ of three
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(b) Show that the ratio between margina] utility of a
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(c) Show that the expenditure on second and third
good are always equal, (3)
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(Attempt any 4 questions out of 6)
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1. (a) Let the rate of growth of output is given by the
function : Q1) = 12413, If Q(0) = 20, find the time
path of output level. Also, find the total production
during the initial three years. (5)

(b) Find the area of the region between the curves
Vo 3x? — 6x + 3 and ¥, T _9x? + 1 within the

interval [0.2].. (5)
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"(¢) Find an expression for the expenditure function.
B = BP.Ey u) 2)
(d) Show that if the probleml changes to
Min P.x + Py subject to x(y +2) = u”

Show that x and ¥ that solve the minimisation
problem are equal to partial derivatives of the
expenditure function. 3)
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Consider a consumer with the cost function U(x,y) =
x(y +2), who faces a budget constraint of B, and

prices of gdod x and good y are P_and Py respectively,

(a) From the first-order conditions, determine the

expression for the demand function. (3)
(b) Find an expression for the indirect utility function.

U" = U@, P,B) 2
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Solve the following difference equations. Also,
determine whether the solution path is convergent or
divergent and oscillatory or non-oscillatory.

(8) %, = 3%, + 4, x,= 2 - ' (5)

t-1

(b) x, = 0.5x

+3,x0=5 (5)

t—1
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(a) The initial value of population of a country is 107,
The birth rate is 0.04, death rate is 0.03 and 30,000
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migrants arrive in the country every year.
Write down the difference equation to represent
this situation and solve it. Comment on its steady
state. (6)

(b) A firm has current sales of Rs. 50,000 per month.
The firm wants to embark upon a certain
advertising campaign that will increase the sales
by 2% every month (compounded continuously)
over the period of 12 months of campaign. Find

the total increase of sales because of the

campaign. 4)
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The firm receives an order for 300 units of A and 500
units of B. The cost per hour of running factories 1,2
and 3 are respectively 10,000, 8,000 and 11,000,

(a) Let y,, ¥, and y, respectively denote the number
of hours for which the three factories are used.
Write down the linear programming problem of
minimising the costs of fulfilling the order and find

its solution. 3 (3)

(b) Write down the dual problem of part (a) and find
the solution. (4)

(c) By how much will the minimum cost of production
increase if the cost per hour in factory 1 increase
by 100? : (3)

ver W A aEI A IR B W IR HE B T D A
FrE § o FetRee afee ¥ @ wE Al 9d e
¥ R aegel o SeeT W §

Factory A Factory B Factory C
asq A 10 ' 20 20
o] B 20 10 20
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SECTION C (@E )

(Attempt any 2 questions out of 3)

(3 ¥ @ = 2 g @ IeR Afoel)

A firm produces two commodities A and B. The
firm has three factories that jointly produce both
commodities in the amounts per hour given in the

following table

Factory A Factory B Factory C
Commodity A 10 20 20
Commodity B 20 10 20

S

(a) For a function y = f(x) with the domain defined as
[0, a], where a is a positive constant. Find the
area under the curve using Riemann integral. Give

an approximated expression for the area. (6)

dipt s
(b) For the following, evaluate a ’t\/x“T dx and

comment on the change in this integral value due

to a unit change in t. 4)
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What is the present value of a continuous revenue
flow lasting for x years at

B.LO,



640 6

(a) A constant rate of R dollars per year and

discounted at the rate of r per year? (5)

(b) Find the present value in case of constant cash
flow of : (5)

(i) $1450 per year, discounted at r=5%, [=2

years

(i1) $2460 per year, discounted at r =8%, t=3

years

X AU O ded drel FRaC UORE WaTE SRl SqarE qed o
87

() ui af R <o &t ok o 3R » ol af ot = A
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(@) TR 9@ 7o & W ¥ 9EAE WE AT st
(i) $1450 vy &, B¢ r=5%, =2 af

(i) $2460 wfa af, BT r=8%, t=3 94

[N

6. Use the graphical method to solve the following LP
problem. (6)
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10. (a) Determine the solutions of the difference equation
and characterise the time path

2x, xSl =00 x = (5)

(b) Solve the following integral

_[6( L +dex
e\ l+x ()
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(a) For the following differential equation d—f:_Sy—S

where y(0)=5. Show that Yeaadetk + 1 asa
solution to the above differential equation and
comment on its equilibrium state? 4)

(b) For the following National Income Accounting
problem :

¥, = 1500

I, = 50

and  C,=90 +0.10Y,_,

National Income Accounting Equation is given by
Y = C+1. Find the time path of the national
income (Y,) at time t. Also comment on the

stability of this time path. (6)

640 i/

(a) Max 3%, o+ 5x,
~ Subject to %y 2R SN0
2%, Fxp <8

2%, ¥ 2%, %6
(b) Write down the dual of the above problem. (4)
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SECTION B (@iE @)
(Attempt any 3 gquestions out of 4)

(4 3 Bt s st 77 e dforen)

7 (a) The value of a machine depreciates over time
according to the relation

P.T.9.
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AV _ 150,003t

dx
where V denotes the value of machine in rupees
and t denotes time in years. Find depreciation in
a period of 5 years. (4)

(b) A firm uses inputs L and K to produce a target
level of output Q = LK, where L and K represent
Labour and Capital respectively. The prices per
unit of L and K are w and r respectively. Solve

the following minimization problem :
Minimise C(L, K) = wL + rK
subject to Q = LK

Find the cost-minimizing level of inpufs L* and K.

Comment on the relation between these optimal

values and the level of output Q. : (6)
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wa C(L, K) = wL + 1K
% 39 Q = LK
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4
8. (a) Evaluate the following definite integral jﬂ £(x) dx

_(VEx+1 s 0gxsl
when f(x) [x2+2x+3 s 1lsx<4 &

(b) Find the differential equation of the family of
circles passing through the origin and having centre

on the y-axis. (6)
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