(b) Find the general solution of the linear partial differential equation

$$(y + zx)p - (yz + x)q = x^2 - y^2$$
 (6.5)

(c) Find the integral surface of the partial differential equation

$$z(x + y)p + z(x - y)q = x^2 + y^2, y = 2x, z = 0$$
(6.5)

6. (a) Find the complete integral of the equation

x+x+... f(x - y + z'); where f is an arbitrary

$$(p + q)(px + qy) = 1$$
 (6)

(b) Reduce the following partial differential equation into canonical form

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} - y^{2} \frac{\partial^{2} z}{\partial y^{2}} + x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = 0$$
 (6)

(c) Solve

O.T.9

$$p \tan x + q \tan y = \tan z \tag{6}$$

[This question paper contains 4 printed pages.]

Sr. No. of Question Eaper: 4915

Unique Rayer prode : 42357501

Name of the Paper : Differential Equations

Name of the Course : B.Sc. (Prog.) - DSE

Semester : V

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt all question by selecting two parts from each question.
- 3. Part of the questions to be attempted together.
- 4. If question paper has Part- A/B/C (write appropriate direction).
- 5. Use of non-programmable Scientific Calculator allowed.

4915

Attempt any two parts from each question.

- 1. (a) Solve $y x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$. (6.5)
 - (b) Find the integrating factor and the solve the differential equation

$$(x^2 + y^2 + 1)dx - 2xydy = 0 (6.5)$$

(c) Solve
$$x \log x \frac{dy}{dx} + y = 2 \log x$$
. (6.5)

- 2. (a) Solve $(D^2 + D)y = x^2 + 2x + 4$, where $D = \frac{d}{dx}$.
 - (6)
 - (b) Find a family of oblique trajectories that intersect the family of straight line y = c x at an angle 45° .
 - (c) Solve $xp^2 2yp + ax = 0$. (6)
- 3. (a) Using the method of variation of parameters, solve the differential equation

If question paper has Part- A/B/C (write appropr

$$(x+4)\frac{dy}{dx} + 3y = 3$$
 (6.5)

(b) Find the general solution of

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + 4y = 2x \log x$$
 (6.5)

(c) Solve

$$tdx = (t - 2x)dt$$

$$tdy = (tx + ty + 2x - t)dt$$
(6.5)

4. (a) Solve

$$(D^3 - 3D^2 - 6D + 8)y = xe^{-3x}$$
, where $D = \frac{d}{dx}$. (6)

(b) Reduce the following partial differential equation

(b) Solve

$$((D^2 - 1)y = x^2 \cos x (6)$$

(c) Solve

$$(D^2 - 1)y = e^{-x} \sin e^{-x} + \cos e^{-x}$$
 (6)

 (a) Form a partial differential equation corresponding to complete integral

$$x + y + z = f(x^2 + y^2 + z^2)$$
, where f is an arbitrary function. (6.5)