- 6. (i) Prove that δ_{ij} (in Cartesian Co-ordinates) is an isotopic tensor of order two. (3)
 - (ii) Using Cartesian tensors, prove that $(\vec{A} \times \vec{B}) \times (\vec{C} \times \vec{D}) = \vec{B}(\vec{A} \cdot \vec{C} \times \vec{D}) \vec{A}(\vec{B} \cdot \vec{C} \times \vec{D})$ (8)
 - (iii) Evaluate $\epsilon_{ijk} \; \epsilon_{puk} \; \delta_{ju}$ (In Cartesian Co-ordinates). (4)
- 7. (i) A covariant tensor has components xy, 2y z²,
 xz in Cartesian Co-ordinates. Find its covariant
 components in spherical co-ordinates. (12)
 - (ii) Check whether an inner product in the form $A_{\mu}B_{\mu} \mbox{ (in General Co-ordinates) is possible or not.} \eqno(3)$
- 8. (a) Show that $\frac{\partial A_p}{\partial_x q}$ (in general co-ordinates) is not a tensor even though A_p is a covariant tensor of rank one. (5)
 - (b) If A_q is a vector, show that $F_{pk} = \frac{\partial A_p}{\partial x_k} + \frac{\partial A_k}{\partial x_p}$ is a second order tensor. (6)
 - (c) Prove that velocity is a contravariant tensor of order one. (4)

[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 4594

Unique Paper Code : 32227502

Name of the Paper : Advanced Mathematical

Physics - I (DSE)

Name of the Course : B.Sc. (Hons.) Physics

Semester : V

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt five questions in all taking at least two questions from each section.
- 3. All questions carry equal marks.

Section - A

- 1. (a) Show that the set of three cube roots of unity i.e.
 - $\{1,\omega,\omega^2\}$ is a group under multiplication? (5)

(b) If V be the set of all ordered pairs $(x, y) \forall x$, $y \in R$, the addition and scalar multiplication defined as

$$(x,y) + (x_1,y_1) = (x + x_1, y + y_1)$$

and $\alpha(x,y) = (\alpha x, y), \alpha \in R$

then show that V is not a vector space.

(5)

- (c) If $V = \{(x, y, z) \ \forall x, y, z \in R\}$ be a vector space under addition and scalar multiplication. $W = \{(x,y,z): x-4y+3z=0 \ \forall x,y,z\}, \text{ verify whether } W \text{ is a subspace of } V.$ (5)
- (a) Let V be the vector space of polynomials of degree ≤ 3 over R. Determine whether polynomials u = t³ 3t² + 5t + 1, v = t³ t² + 8t + 2, w = 2t³ 4t² + 9t + 5 are independent or not?
 (5)
 - (b) A linear transformation T of R² maps [1,2] into [-2,1] and also maps [-1,1] into [5,-7], compute the image of [x, y]. (5)
 - (c) Let T be the transformation such that

$$T(x,y,z) = (2x, 4x - y, 2x + 3y - z)$$

(i) Show that T is invertible.

(ii) Find
$$T^{-1}$$
. (2,3)

3. (i) Find the eigenvalues and normalized eigenvectors of the matrix

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \tag{7}$$

(ii) Verify Cayley-Hamilton theorem for the matrix

$$A = \begin{pmatrix} 5 & 1 \\ 1 & 5 \end{pmatrix}$$
Hence find A⁻¹. (8)

- 4. (i) Evaluate A²⁰, where $A = \frac{1}{3} \begin{pmatrix} 4 & \sqrt{2} \\ \sqrt{2} & 5 \end{pmatrix}$. (5)
 - (ii) Solve the following system of differential equations using matrix method

$$y_1' = y_1 + y_2$$

 $y_2' = 4y_1 + y_2$

subject to the initial conditions $y_1(0) = y_2(0) = t$.
(10)

Section - B

- 5. (i) For an asymmetric object, obtain an expression for the moment of inertia tensor. Prove that it is a symmetric tensor of order two. (6,4)
 - (ii) Using tensors, show that scalar product of two vectors is invariant. (5)