8

(c) Explain any two Abstract Data Types. (4)

7,8202. 01/8/33(P)

[This question paper contains 8 printed pages.]

■ 1 AUG 2023

Your Roll No ...

Sr. No. of Question Paper: 1411

Unique Paper Code

: 2342571201

Name of the Paper

: Data Structures

Name of the Course

: B.Sc. (Programme) and B.A.

(Programme)

Year of Admission

: 2019 & onwards

Semester

: II

Duration: 3 Hours

Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Section A is compulsory.
- 3. Attempt any four questions from Section B.
- 4. Parts of the question must be answered together.

(4)

SECTION A

(a) How a binary heap is different from a binary search tree. Explain with a suitable example.

(4)

- (b) What is the difference between Big-O and Big-(4) Theta notation? Explain.
- (c) When do we use Stack Data structure? Write a program in C++ for 'push' operation in array implementation of stack. Also discuss the stack (4) overflow condition.
- (d) Write a program in C++ to compute the sum of first n natural numbers using recursion.
- (e) Create a binary search tree using the following key values;
 - 12, 8, 23, 9, 14, 15

(c) Write a program in C++ to search for an element in a doubly linked list and delete it if found.

(4)

(a) Explain how Master's theorem can be used for solving recurrences giving suitable example.

(6)

- (b) Compare and contrast priority queue and dequeue. Also, give one real-life application of priority (5)queue.
- (c) Write a program in C++ to reverse a given array (4) using recursion.
- (a) What is a circular linked list? How a circular linked list is different from a doubly linked list. Discuss different operations performed on a circular linked (6)list.
 - (b) Perform the insertion sort on the array $\{7,1,10,6,3\}$, show the steps after each iteration. Also, report (5)the number of comparisons.

P.T.O.

1411

3

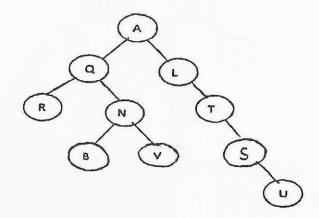
- (b) Write a program in C++ for computing Fibonacci numbers via Binary Recursion. (5)
- (c) Illustrate the operation of counting-sort on the array $A = \{5,0,2,0,1,3,4,5,1,3,3\}$ (4)
- 5. (a) Consider the functions given below, sort the functions in increasing order of asymptotic (big-O) complexity: (6)

$$f_1(n) = n^{0.999999} \log n$$

$$f_2(n) = 10000000 n$$

$$f_3(n) = 1.000001^n$$

$$f_4(n) = 2^{1000000n}$$


$$f_5(n) = n\sqrt{n}$$

$$f_6(n) = n(n-1)/2$$

(b) Write a program in C++ for performing an enqueue operation for an array-based queue implementation.

(5)

(f) Give the Breadth-First Traversal of the binary tree given below: (4)

- (g) What are height-balanced trees? Explain with the help of a suitable example. (3)
- (h) Discuss the role of stacks in the implementation of recursion with the help of a suitable example.

SECTION B

2. Consider the following Binary Search Tree. (15)

(3)

5

10 12 20 22

Show the status of the tree after each of the following operations:

- (i) Draw the tree after insertion of node with value 11.
- (ii) Delete node with value 10 from the resultant tree.
- (iii) Write the pr-order traversal of the resultant tree.
- (iv) Is the resultant tree a height-balanced tree? Give justification for your answer.
- (v) Finally, delete the node with value 4 from the resultant tree.

3. (a) Write a program in C++ to compute the factorial of a number with and without using recursion.

(6)

(b) Solve the recurrence $T(n) = 3T(\frac{n}{4}) + cn^2$ using Recursion-tree method. (5)

(c) Write a program in C++ to insert an element at the front of a singly linked list. (4)

4. (a) Consider the following sequence of operations performed on an initially empty Deque:

InsertFront(10),

InsertFront(5),

EraseFront(),

InsertBack(7),

Front(),

EraseBack()

Show the contents of the deque and output after each operation. (6)