some vectors $v_1, v_2, ..., v_n \in V$, then $\{v_1, v_2, ..., v_n\}$ is linearly independent set in V. Is the converse true? Justify with examples. Under what condition the converse holds true, Justify.

[This question paper contains 8 printed pages.]

E S JUL

2023 Your Roll No. 2004

Sr. No. of Question Paper: 2033

Unique Paper Code

: 2354001202

Name of the Paper

: Introduction to Linear

Algebra

Name of the Course

: **GE**

Semester

: II

Duration: 3 Hours

Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt all question by selecting two parts from each question.
- 3. Part of the questions to be attempted together.
- 4. All questions carry equal marks.
- 1. (a) If x and y are vectors in \mathbb{R}^n then prove that

 $|x.y| \le (||x||)(||y||).$

Also verify it for vectors x = [-1, -1, 0] and

$$y = \left[\sqrt{2}, \sqrt{2}, \sqrt{2}\right]$$

(b) Use Gaussian Elimination to solve the following system of linear equations. Indicate whether the system is consistent or inconsistent. Give the complete solution set, if consistent.

$$3x - 3y - 2z = 23$$

 $-6x + 4y + 3z = -40$
 $-2x + y + z = -12$

(c) Use Gauss-Jordan row reduction method to find the complete solution set for the following system of equations.

$$4x - 8y - 2z = 0$$

$$3x - 5y - 2z = 0$$

$$2x - 8y + z = 0$$

6. (a) Let L: $R^3 \to R^3$ be given by

$$L\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 5 & 1 & -1 \\ -3 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

- (i) Is [1, -2, 3] in Ker(L)? Why or why not?
- (ii) Is [2, -1, 4] in Range(L)? Why or why not?
- (b) Consider the linear Transformation L: $M_{3\times3} \rightarrow M_{3\times3}$ given by

$$L(A) = A - A^{T},$$

where, A^T represents the transpose of the matrix A. Find the Ker(L) and Range(L) of the Linear Transformation, and verify

 $\dim(\operatorname{Ker}(L)) + \dim(\operatorname{Range}(L)) = \dim(M_{3\times 3}).$

(c) Suppose that L: $V \rightarrow W$ is a linear Transformation. Show that if $\{L(v_1), L(v_2), ..., L(v_n)\}$ is a linearly independent set of n distinct vectors in W, for

3

(b) Consider the linear Transformation L: $P_3(R) \rightarrow M_{2\times 2}(R)$ given by

$$L(ax^3 + bx^2 + cx + d) \begin{bmatrix} -3a - 2c & -b + 4d \\ 4b - c + 3d & -6a - b + 2d \end{bmatrix}$$
.

Find the matrix for L with respect to the standard basis for P_3 and $M_{2\times 2}$. Also, Find the dimension of Ker(L) and Range(L).

(c) Let L: $P_3 \rightarrow P_4$ be given by

$$L(p) = \int p$$
, for, $p \in P_3$.

Where, $\int p$ represents the integration of p. Find the matrix for L with respect to the standard basis for P_3 and P_4 . Use this matrix to calculate $L(4x^3 - 5x^2 + 6x - 7)$ by matrix multiplication.

2. (a) Define rank of a matrix. Find Rank of the matrix

$$A = \begin{bmatrix} 3 & 5 & 2 \\ 4 & 2 & 3 \\ -1 & 2 & 4 \end{bmatrix}.$$

(b) Find all Eigen values corresponding to the matrix A. Also, find the eigenspace for each of the eigen

value of the matrix A, where $A = \begin{bmatrix} 12 & -51 \\ 2 & -11 \end{bmatrix}$.

(c) Let $A = \begin{bmatrix} 3 & 1 & -2 \\ 4 & 0 & 1 \\ -2 & 4 & -3 \end{bmatrix}$. Determine whether the

vector X = [5, 17, -20] is in row space of the matrix A. If so, then express X as a linear combination of the rows of A.

3. (a) Let V be a vector space. Let H and K be subspaces of V. Prove that H ∩ K is also a subspace of V. Give an example to show that H ∪ K need not be a subspace.

2033

- (b) Prove or disprove that the set $S = \{ [1,2,1], [1,0,2], [1,1,0] \}$ forms a basis of R^3 .
- (c) Use the Diagonalization Method to determine whether the matrix A is diagonalizable. If so, specify the matrices D and P and verify that $P^{-1}AP = D$, where

$$A = \begin{bmatrix} 19 & -48 \\ 8 & -21 \end{bmatrix}.$$

- 4. (a) (i) Let $S = \{(x,y,z): x + y = z \ \forall x, y, z \in R\}$. Show that S is a subspace of R^3 .
 - (ii) Consider the vector space $M_{3\times 3}(R)$ and the sets

 T_1 : the set of nonsingular 3×3 matrices

 T_2 : the set of singular 3×3 matrices.

Determine T_1 and T_2 are subspaces of $M_{3\times 3}(R)$ or not?

(b) Define linearly independent subset of a finite dimensional vector space V. Use Independent Test Method to find whether the set S = {[1,0,1,2], [0,1,1,2], [1,1,1,3], [-1,2,3,1]} of vectors in R⁴ is linearly independent or linearly dependent.

5

- (c) Define basis of a vector space V. Show that the subset $\{[1,0,-1],[1,1,1],[1,2,4]\}$ of \mathbb{R}^3 forms a basis of \mathbb{R}^3 .
- 5. (a) (i) Determine whether the following function is a Linear Transformation or not?

L:
$$R^3 \to R^3$$
 given by
$$L([x_1, x_2, x_3]) = [x_2, x_3, x_1].$$

(ii) Suppose L: $R^3 \rightarrow R^3$ is a linear operator and

$$L[1,0,0] = [-2,1,0], L[0,1,0] = [3,-2,1]$$
 and $L[0,0,1] = [0,-1,3].$

Find L[-3,2,4]. Give a formula for L[x, y, z], for any $[x, y, z] \in \mathbb{R}^3$.