[This question paper contains 4 printed pages.]

Your Roll No

(c) Moist soil has a conductivity of 10^{-3} S/m and relative permittivity 2.5. Find J_c and J_D where $E = 6 \times 10^{-6} \sin(9 \times 10^9 \text{ t}) \text{ V/m}$ (3)

- 5. (a) Two infinitely long grounded metal plates at y=0 and y= π are connected at x=+a and x=-a by a metal strip maintained at potential V_0 . Find the potential inside the rectangular pipe for V=0 when y=0 & y = π and V= V_0 at x = +a & x=-a. (12)
 - (b) What is the significance of Maxwell's displacement current, and how is it different from conduction current? (3+3)
- 6. (a) Two semi-infinite grounded conducting planes meet at right angles. In the region between them there is a point charge q. Find the location and magnitude of all image charges. (9)

(b) An infinitely long circular cylinder carries a uniform magnetization M parallel to its axis. Find the magnetic field inside and outside the cylinder.

(2500)

(9)

Sr. No. of Question Paper: 1225

Unique Paper Code : 2222011202

Name of the Paper : Electricity and Magnetism

Type of the Paper : DSC

Name of the Course : B. Sc. (H)

Semester : II

Duration: 3 Hours Maximum Marks: 90

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Question 1 is compulsory.
- 3. Attempt any four questions from question numbers 2-6.
- 4. All questions carry equal marks.
- 1. Attempt all parts of this question: $(6\times3=18)$
 - (a) Find the electric field at the centre due to a uniformly charged semi-circular arc.

- (b) Find the potential for the region between two concentric right circular cylinders when $V_1 = 0$ at V at r = 1 mm and $V_2 = 150$ V at r = 20 mm.
- (c) What is the interpretation of Gauss's law in the case of static charge and steady current, respectively.
- (d) An infinite solenoid (N turns per unit length, current I) is filled with linear material of susceptibility Xm. Find the magnetic field inside the solenoid.
- (e) A dielectric cube of side 'a' centered at the origin carries a polarization $\vec{p} = k\vec{r}$ where k is a constant. Find the bound charges densities σ_b and ρ_b ?
- (f) Why the nature of magnetic susceptibilities in paramagnet, diamagnet and ferromagnet are different?
- (a) A uniformly charged disc of radius R having surface charge density c is placed in the x-y plane with its center at the origin. Find the electric field intensity along the z-axis at a distance Z from (9)origin.
 - (b) Verify that the differential version of Ampere's Law implies the integral version, using Stokes' (6)Theorem.

- (c) Is the choice of the vector potential corresponding to a given magnetic field unique? Justify. (3)
- (a) Obtain the boundary conditions for the electric field and displacement vector at the interface of two dielectric media having dielectric constants ε_1 and ε_2 respectively.
 - (b) Which one of these is an impossible electrostatic field? Justify.

(i)
$$\vec{E} = k[xy\hat{i} + 2yz\hat{j} + 3xyz\hat{k}]$$

(ii) $\vec{E} = k[y^2\hat{i} + (2xy + z^2)\hat{j} + 2yz\hat{k}]$ (6)

- (c) A solenoid of length 30 cm and area of crosssection 10 cm² has 1000 turns wound over a core of constant mu = 600. Another coil of 500 turns is wound over the same coil at its middle. Calculate the mutual inductance between them. (6)
- (a) Calculate the divergence of electrostatic field due to a point charge q located at r' from the origin. Give the physical interpretation of your result.

(9)

(b) A current distribution generates a vector potential

 $\vec{A} = xy\hat{i} + yz\hat{j} - 4xyz\hat{k}$ Wb/m. Calculate the flux of magnetic field through the surface defined by z =(6) $1, 0 \le x \le 1 \text{ and } -1 \le y \le 4$ P.T.O.