(a) Derive the expression for Curie Weiss law using Weiss theory of Ferromagnetism.

- (b) Discuss the concept of hysteresis and show that the B. H hysteresis loop gives the value of energy dissipated per cubic meter of the material per cycle (6) of magnetization.
- (c) A magnetic substance has 10^{28} atoms/m³. The magnetic moment of each atom is 1.8×10^{-23} Am². Calculate the paramagnetic susceptibility at 300K. What would be the dipole moment of a bar of this material 0.1 m long and having cross-sectional area of 1 cm² in a field of $8\times 10^4 Am,~\mu_0=4\pi\times 10^{-7}$ henry/m, $k_B = 1.38 \times 10^{-23} \text{ J/K}.$ (3)
- (a) Explain the concept of Local Electric Field in a dielectric and derive its expression for structures possessing cubic symmetry. (8)
 - (b) Obtain Clausius-Mossotti's relation between polarizability and dielectric constant of a solid.

(7)

- (a) Explain the phenomenon of superconductivity. Derive London's first and second equations and discuss penetration depth in a superconductor with the help of a diagram. (12)
 - (b) Show that the susceptibility of superconductors is -1 and relative permeability is zero. (3)

library 02/12/2022 (M)

Your Roll N [This question paper

Your Roll No.....

Sr. No. of Question Craper 1051

Unique Paper Code

Name of the Paper

: Solid State Physics

Name of the Course

: B.Sc. (Hons.) Physics CBCS

(Core)

Semester

: V

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- Attempt any five questions in all.
- Question number 1 is compulsory.
- All questions carry equal marks.
- Attempt any five of the following: $(5 \times 3 = 15)$
 - (a) Prove that for a SC lattice, d_{100} : d_{110} : $d_{111} = \sqrt{6}$: $\sqrt{3}$: $\sqrt{2}$; where 'd' represents interplanar distance in a crystal.

- (b) An element has a cubic structure having lattice constant as 4.28 Å, and with two of its atoms in the unit cube at (0,0,0) and (1/2, 1/2, 1/2). Find out the distance between nearest neighbours in this element.
 - (c) The Debye Temperature for Diamond is 2230 K. Calculate the highest possible vibrational frequency.
 - (d) The energy near the top of the valence band of a crystal is given by $E=-Ak^2$, where $A=10^{-39}~Jm^2$ and k is the wave vector. An electron with wave vector $k=10^{10}~k_x^2~m^{-1}$ is removed from an orbital in a completely filled valence band. Find the effective mass, momentum and energy of the hole. Given Planck's constant $h=6.62\times 10^{-34}Js$.
 - (e) What are the basic assumptions of Drude's model for describing electron motion in metals.
 - (f) Distinguish between dia-, para- and ferromagnetism.
 - (g) Calculate the electronic polarizability of Neon. The radius of Neon atom is 0.158 nm. ($\epsilon_0 = 8.854 \times 10^{-12}$ F/m).
 - (h) Calculate the critical current which can flow through a long thin superconducting wire of aluminium of diameter 10^{-3} m. The critical field for aluminium is 7.9×10^{3} A/m.

- 2. (a) What is Geometrical structure factor? Derive its expression for FCC structure having identical atoms. Will reflection from (211) plane be possible for this structure? (10)
 - (b) Show that reciprocal lattice of a BCC lattice is a FCC structure. (5)
- 3. (a) Derive the expression for specific heat of a solid based on Einstein's model. Explain why this model was not successful. (8)
 - (b) Deduce the dispersion relation for a linear monatomic chain of atoms and show that the group and phase velocities of a wave are same in the long wavelength limit. (7)
- 4. (a) Find the expression for the Hall coefficient of a semiconductor in which both electrons and holes are present in equal concentrations. How will this expression change if the hole concentration is twice the electron concentration and vice-versa? Also, explain how will this expression be modified if the semiconductor is heavily doped with p-type impurity or n-type impurity? (12)
 - (b) Distinguish between direct and indirect band gap with the help of diagram. (3)