(xiii)
$$H_3C - C - B_{\Gamma_1} + CH_3O^-Na^+$$

$$\begin{array}{ccc} (\text{xiv}) & \text{CH}_2\text{COOH} & & \triangle \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

[This question paper contains 8 printed pages.]

Your Roll No.

Sr. No. of Question Paper: 1401

 \mathbf{C}

Unique Paper Code

: 32171302

26 DEC 2029

Name of the Paper

: Organic Chemistry - II

(Oxygen Containing Functional

Groups)

Name of the Course

: B.Sc. (H) Chemistry

Semester

: III

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt five questions in all.
- (a) An organic compound A (C₅H₁₀O₂) on reduction with lithium aluminium hydride (LiAlH₄) forms organic compounds B (C₃H₈O) and C (C₂H₆O).

 B on oxidation followed by heating with calcium oxide gives D (C₅H₁₀O). C on reaction with NaOH/

2

b forms E and a yellow precipitate of CHI₃. Identify the organic compounds A, B, C, D and E. Give the name reaction involved during the conversion of C to E along with mechanism.

(b) Identify A having molecular formula $(C_{14}H_{12}O_2)$ in the following reaction. Give the name of the reaction and mechanism involved. Write down the role of cyanide ion in the following reaction:

2. (a) Carry out the following conversions (any three):

- (ii) Propanal → Propan-2-ol.
- (iii) Ethane nitrile → Butan-2-one.
- (iv) Ethanal → Butane.
- (b) Identify A and B in the following reaction and justify your answer:

1401

7

(vi)
$$H_3C$$
— C — CH_2CH_3 Zn - Hg/HCI

(viii)
$$CH_2$$
 $COOC_2H_5$
 $+$
 H_2N
 $C = O$
 $COOC_2H_5$

(x) CH₃CH₂CHO (i) Dil. NaOH (ii)
$$\triangle$$

(xi)
$$H_3C$$
— C — Br + $NaSH$ — H

- (c) (i) Write down the products obtained on heating α , β and γ -hydroxycarboxylic acid separately.
 - (ii) Tertiary alkyl halides are not good substrates for nucleophilic substitution reactions. Explain.
 - (iii) p-Chlorotoluene on reaction with NaNH₂ in liq. NH₃ forms m-toluidine along with p-toluidine. Explain. (4,2,3,3,3)
- 6. Complete the following reactions:
 - (i) CH₃CH₂COOH Cl₂/Red P

(iv)
$$\begin{array}{c} C_6H_5 \\ H_3CH_2C \end{array}$$
 C OH OH

(v) PhCHO + CH3COCH2COÖEt Na+OC2H5

- Conc. H₂SO₄ A

 CH₃CH₂OH

 Conc. H₂SO₄ B

 (9,6)
- 3. (a) Carry out the synthesis of any three following compounds either from EAA (Ethyl acetoacetate) or DEM (Diethyl malonate):
 - (i) Methylsuccinic acid
 - (ii) 4-Oxopentanoic acid
 - (iii) Crotonic acid
 - (iv) Antipyrine
 - (b) Differentiate between the following (give visible test only) and write down the reaction involved (any three):
 - (i) Acetaldehyde and acetophenone
 - (ii) Ethanol and propan-2-ol
 - (iii) Benzoic acid and p-cresol
 - (iv) Ethylchloride and chlorobenzene (9,6)

1401

5

4. (a) Give reason for the following (any four):

(i) The rate of hydrolysis of the carboxylic acid derivatives is:

 $CH_3COC1 > (CH_3CO)_2O > CH_3CONH_2$

- (ii) $S_N 1$ reactions are accompanied by racemization, while $S_N 2$ reactions result in the inversion of the configuration.
- (iii) 2,2-Dimethylpropanal gives Cannizzzaro's reaction, while 2-methylpropanal does not.
- (iv) Carboxylic acid does not form oxime though they have carbonyl group (>C=0) in their structure.
- (v) Malonic acid and β-keto carboxylic acid decarboxlate readily on heating 200°C.
- (vi) Ketones cannot be prepared from acid chloride and RMgX although they can be prepared from acid chloride and R_2 Cd/ R_2 CuLi.
- (b) Prepare the following organic compound using Wittig reaction:

CH₂ (12,3)

5. (a) Identify the organic compounds (A, B) and explain their formation with the help of mechanism.

$$OR \longrightarrow OCH_3 + HI \longrightarrow A + B$$

Identify the organic compound (A) formed in the following reaction and explain its formation with the help of mechanism.

(b) Benzene on reaction with propene in the presence of a Lewis acid forms A (C_9H_{12}) . A on aerial oxidation forms B $(C_9H_{12}O_2)$. B on acidic hydrolysis gives C (C_6H_6O) and D (C_3H_6O) . Identify the organic compounds A, B, C and D.