6 Dec

a wire of 25 pm diameter at +700 V in the centre. What is the electric field at the wire?

(c) A cyclotron with Dee's of diameter 1.8 m has a magnetic field of 0.8 T. Calculate the energy to which the doubly ionised helium ion He⁺⁺ can be accelerated. Also calculate the number of revolutions the particle makes in attaining this energy. [Mass of He⁺⁺ = 6.68 × 10⁻²⁷kg]

(5+5+5)

- 7. (a) Give the quark structure of a neutron and based upon quark structure give the correct charge number, spin, baryon number and strangeness.
 - (b) Check whether strangeness and baryon number of the following decay is conserved or not?

(i) p+ p
$$\rightarrow$$
 p+ Λ^0 + Σ^+

(ii)
$$\pi^- + p \rightarrow \Sigma^{\circ} + \nu$$

(c) What are strange particles? Find the charge number, baryon number and strangeness of a particle described by the quark structure (sss). Identify the particle. (6+4+5)

PHYSICAL CONSTANTS

O STINITION OF	
$m_{H} = 1.007825 \text{ u},$	$m_n = 1.008665 u$
$m_e = 0.00055 u,$	$m(_{2}^{4}He) = 4.002603 u$
$1 u = 1.66 \times 10^{-27} \text{ kg},$	$R_0 = 1.2 \text{ fin}$
$e_0 = 8.85 \times 10^{-12} \text{C}^2/\text{Nm}^2,$	$h = 6.6 \times 10^{-34} \text{ Js}$
$c = 3 \times 10^8 \text{ m/s},$	$1 \text{ eV} = 1.6 \times 10^{-19} \text{J}$

(1500)

[This question paper contains 4 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1240

 \mathbf{C}

Unique Paper Code

: 32227504

Name of the Paper

: Nuclear and Particle Physics

Name of the Course

: B.Sc. (Hons.) Physics-CBCS

Semester

: V

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt five questions in all. Question No. 1 is compulsory.
- 3. All questions carry equal marks.
- 4. Use of Scientific Calculator is allowed.
- 5. Values of required constants have been given at the end.
- 1. Answer any five:

 $(3 \times 5 = 15)$

- (a) Determine the radius of 208Pb.
- (b) What are magic numbers? What is their significance?
- (c) Give three main differences between direct and compound-nucleus reactions.

- (d) What is stripping reaction? Give one example of stripping reaction.
- (e) Differentiate between pair production and internal pair conversion.
- (f) Why is G.M. counter not suitable for energy and charge spectroscopy applications?
- (g) What would be the energy that is required to annihilate proton and antiproton?
- (h) Why photoelectric effect is not possible with free electrons?
- 2. (a) Plot the binding energy per nucleon vs mass number. Explain with its help the release of energy in the processes of fission and fusion.
 - (b) Calculate de Broglie wavelength for an electron having energy 15 MeV. Show that electron does not exist inside the nucleus.
 - (c) Find the energy required to knock out nucleons from the He nucleus. (7+3+5)
- (a) Explain liquid drop model. Obtain semi-empirical mass formula. Give any two achievements of the model.
 - (b) Calculate the coulomb energy of $^{238}_{92}$ U.
 - (c) State the assumptions of Fermi gas model of nucleus. (8+5+2)

- 4. (a) What conservation laws were apparently violated due to typical continuous energy distribution of the β-decay electrons? How did Pauli proposal of new particle overcome on these violations?
 - (b) The total energy liberated in the α -decay of $^{226}_{88}$ Ra is 4.87 MeV, (i) Identify the daughter nucleus, (ii) calculate the kinetic energy of α -particle and (iii) calculate the recoil energy of the nucleus.
 - (c) Explain secular and transient equilibrium.

(7+4+4)

- 5. (a) How does a heavy charged particle interact with matter? Derive an expression for the energy loss per unit path length travelled by the heavy charged particle.
 - (b) Define the Q-value for a nuclear reaction. What is its significance. If the Q-value for the reaction $^{14}\text{Na}(\alpha,p)^{17}\text{O}$ is -1.20 MeV, find the minimum kinetic energy in the lab system required by an α particle to cause this reaction. (10+5)
- 6. (a) Explain the procedure by which high potential of the order of MV is generated in a Tandem accelerator. Explain the purpose of using SF₆ gas in Tandem accelerator tank.
 - (b) Define quenching in GM counters. A GM counter consists of a 50 mm diameter grounded tube with