Show that G/N is isomorphic to the group of all the positive real numbers under multiplication.

(2×6.5=13)

[This question paper contains 8 printed pages.]

Your Roll No......

Sr. No. of Question Paper: 1409

 $\mathbf{C}$ 

Unique Paper Code

32351302

6 DEC 2022

Name of the Paper

: BMATH306 - Group Theory-I

Name of the Course

: B.Sc. (Hons) Mathematics

Semester

: III

Duration: 3 Hours

Maximum Marks: 75

## Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions are compulsory.
- 3. Attempt any two parts from each question from Q2 to Q6.
- 4. In the question paper, given notations have their usual meaning unless until stated otherwise.

2

€409

 Give short answers to the following questions. Attempt any six.

(i) What is the total no of rotations and total no of reflections in the dihedral group D<sub>3</sub>? Describe them (rotations and reflections) in pictures or words. What can you say about the total no of rotations and total no of reflections in the dihedral group D<sub>n</sub>?

- (ii) Give one non-trivial, proper subgroup of GL(2, R). Is GL(2, R) a group under addition of matrices? Answer in few lines.
- (iii) Let G be a group with the property that for any a, b, c in G,

ab = ca implies b = c. Prove that G is Abelian.

(iv) Give an example of a cyclic group of order 5.

Show that a group of order 5 is cyclic.

then  $\phi^{-1}(\overline{K}) = [k \in G: \phi(k) \in \overline{K}]$  is a subgroup of G.

...

(c) If H and K are two normal subgroups of a group G such that  $H \subseteq X$ , then prove that

$$G/K \approx \frac{G/H}{K/H}.$$
 (2×6=12)

- 6. (a) Show that the mapping  $\phi$  from  $\mathbb{C}^*$  to  $\mathbb{C}^*$  given by  $\phi(z)=z^4$  is a homomorphism. Also find the set of all the elements that are mapped to 2.
  - (b) Prove that every group is isomorphic to a group of permutations.
  - (c) Let G be the group of non-zero complex numbers under multiplication and N be the set of complex numbers of absolute value 1.

- (ii) Let |G| = pq, p and q are primes. Prove that |Z(G)| = 1 or pq. (4+2.5=6.5)
- (c) (i) Prove that a subgroup of index 2 is normal.
  - (ii) Let G = U(32),  $H = U_8(32)$ . Write all the elements of the factor group G/H. Also find order of 3H in G/H. (3+3.5=6.5)
- 5. (a) Show that the mapping from  $\mathbb R$  under addition to
  - $GL(2, \mathbb{R})$  that takes x to  $\begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$  is a group homomorphism. Also, find the kernel of the homomorphism.
  - (b) Let  $\phi$  be a homomorphism from a group G to a group  $\overline{G}$  . Show that if  $\overline{K}$  is a subgroup of  $\overline{G}$  ,

- (v) Prove that a cyclic group is Abelian. Is the converse true?
- (vi) Find all subgroups of Z<sub>15</sub>.
- (vii) Prove that 1 and -1 are the only two generators of (Z,+). Give short answer in few lines.
- (viii) " $Z_n$ .  $n \in N$ , is always cyclic whereas U(n),  $n \in N$ ;  $n \ge 2$  may or may not be cyclic". Prove or disprove the statement in a few lines.  $(6 \times 2 = 12)$
- 2. (a) Let  $G = \{a + b\sqrt{2} \mid a \text{ and } b \text{ are rational nos not both zero}\}$

Prove that G is a group under ordinary multiplication. Is it Abelian or Non-Abelian? Justify your answer.

- (b) Prove that a group of composite order has a non-trivial, proper subgroup.
- (c) Prove that order of a cyclic group is equal to the order of its generator.  $(2\times6.5=13)$
- 3. (a) Prove that every permutation of a finite set can be written as a cycle or as a product of distinct cycles.(6)
  - (b) (i) In S<sub>4</sub>, write a cyclic subgroup of order 4 and a non-cyclic subgroup of order 4.
    - (ii) Let  $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 8 & 6 & 7 & 5 & 1 & 3 \end{bmatrix}$  and

$$\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 4 & 5 & 1 & 8 & 3 & 2 & 6 \end{bmatrix}$$

- Write  $\alpha$ ,  $\beta$  and  $\alpha\beta$  as product of 2-cycles. (3+3=6)
- (c) (i) Let |a| = .24. How many left cosets of  $H = \langle a^4 \rangle$  in  $G = \langle a \rangle$  are there? Write each of them.
  - (ii) State Fermat's Little theorem. Also compute  $5^{25} \mod 7$  and  $11^{17} \mod 7$ . (3+3=6)
- 4. (a) (i) Let H and K be two subgroups of a finite group. Prove that
   HK ≤ G if G is Abelian.
  - (ii) Give an example of a group G and its two subgroups H and K (H≠K) such that HK is not a subgroup of G.
     (3+3.5=6.5)
  - (b) (i) Let G be a group and let Z (G) be the centreof G. If G/Z (G) is cyclic, prove that G is Abelian.