6

Write short notes on (any three): (12)

- (i) Significance of hypothesis testing
- (ii) Scoring matrices
- (iii) Drug discovery methods
- (iv) Machine Learning in Bioinformatics

6 DEC

[This question paper contains 6 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1162

Unique Paper Code

: 32237905

Name of the Paper

: DSE Computational Biology

Name of the Course

: B.Sc. (H) Zoology

Examination, 2022-LOCF

Semester

: V

Duration: 3 Hours

Maximum Marks: 75

## Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- Use of simple calculator is allowed.
- Statistical tables should be provided.
- Attempt five questions in all, including Question No 1 which is compulsory.
- (a) Expand the following abbreviations:
  - (i) DDBJ
  - (ii) GWAS

(3)

1162

5

- (iii) BLAST
- (iv) BLOSUM
- (v) GCG
- (vi) ADMET
- (b) Match the terms in column A with those given in column B: (3)

| A                         | В                      |
|---------------------------|------------------------|
| Dynamic Programming       | Chi square test        |
| Composite Database        | PDB                    |
| Structural Bioinformatics | MSA                    |
| Heuristic Method          | Needlemann-Wunsch (NW) |
| Progressive Alignment     | OMIM                   |
| Karl Pearson              | FASTA                  |

(5)

- (c) Define the following:
  - (i) Biological Database
  - (ii) Gap Penalty
  - (iii) Dot matrix
  - (iv) Functional Genomics
  - (v) Null Hypothesis

- (a) Classify and explain major nucleotide databases in bioinformatics with examples.
  - (b) Explain similarities and differences between BLAST and FASTA tools for sequence alignment. (4+8)
- 5. (a) Discuss different methods of protein sequencing.
  - (b) What are the differences between chain termination and chemical cleavage method of gene sequencing? (8+4)
- 6. (a) What are confidence intervals? Explain their significance using a suitable example.
  - (b) A researcher was analyzing the results obtained from a heterozygous dihybrid cross and following data was obtained: dominant for both traits: 570, dominant for trait 1 and recessive for trait 2: 185, dominants for trait 2 and recessive for trait 1: 190, and recessive for both traits: 55. Perform a chi-square analysis to see if the data above agrees with the predicted outcome of this cross  $(\alpha = 0.05)$ . (4+8)

- (g) State whether the following statements are true or false. Give reasons for your answer. (3)
  - (i) BLAST and FASTA are faster than Dynamic programming.
  - (ii) Gap extension penalty is always smaller than gap opening penalty.
  - (iii) Variance is the square root of standard deviation.
- 2. (a) Define Bioinformatics. Discuss its aim and scope in biological sciences.
  - (b) Describe major applications as well as limitations of Bioinformatics. (6+6)
- 3. (a) What is the advantage of Needleman-Wunsch alignment over seeded alignment?
  - (b) What are indels and indel penalty? Explain different types of gap penalties used in scoring alignments?
  - (c) What would happen if gap penalties were too high or too low? Explain your answer in each case.

(4+6+2)

| (d) Differe | entiate between the following:           | (8) |
|-------------|------------------------------------------|-----|
| (i)         | Curated and Non-curated databases        |     |
| (ii)        | Local and Global Alignment               |     |
| (iii)       | Type I and Type II error                 |     |
| (iv)        | Dependent and Independent t-test         |     |
| (e) Explai  | n the following symbols:                 | (3) |
| (i)         | p                                        |     |
| (ii)        | C.V.                                     |     |
| (iii)       | Σ                                        |     |
| (iv)        | μ                                        |     |
| (v)         | α                                        |     |
| (vi)        | $\sigma^2$                               |     |
| (f) Write   | the contribution of following scientists |     |
| (;)         | C41 A1411                                | (2) |
| (1)         | Stephen Altschul                         |     |
| (ii)        | Christian D. Wunsch                      |     |
| (iii)       | Steven Henikoff                          |     |
| (iv)        | William Sealy Gosset                     |     |