- (v) Accession number and version number
- (vi) GenBank and GenPept

MB 14

- 4. (a) Give comparative account on Maximum parsimony,
 Maximum livelihood, Neighbour joining method of
 phylogenetic tree construction. (9)
 - (b) Expand BLAST. Discuss briefly about its different types. (6)
- 5. (a) Define bioinformatics. Discuss the scope areas of bioinformatics in biology. (6)
 - (b) Give a comparative account on the various data submission and retrieval tools of NCBI and EMBL. (9)
- 6. (a) What do you understand by computer-aided drug designing? Explain various phases of clinical trials? (7)
 - (b) Discuss different levels of protein structure and describe computational method of protein structure prediction. (8)

٠.,

Lib 06/12/2022

[This question paper contains 4 printed pages.]

Your Roll No

Sr. No. of Question Paper: 1526

0 6 DEC 2021

Unique Paper Code

: 42167905

Name of the Paper

: Bioinformatics (DSE)

Name of the Course

: B.Sc. Life Sciences III Year

Semester

: V

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt five questions in all.
- 3. Question number 1 is compulsory.
- 4. All parts of the questions must be answered together.
- 5. All questions carry equal marks.
- 1. (a) Define the following (any five): $(1\times5=5)$
 - (i) Expectation value (E value)

P.T.O.

(500)

- (ii) Node
- (iii) Proteomics
- (iv) Phylogenetic tree
- (v) Python
- (vi) Conserve sequence
- (vii) ORF
- (b) Match the following:

 $(1 \times 5 = 5)$

Column A

Column B

- (i) Margaret O. Dayhoff BLAST
- (ii) Stephen Altschul Local sequence alignment
- (iii) Needleman and Wiinsch BLOSUM
- (iv) Smith and Waterman PAM
- (v) Henikoff and Henikoff Global sequence alignment
- (c) Expand of the following (any five): $(5\times1=5)$
 - (i) CATH
 - (ii) KEGG

- (iii) QSAR
- (iv) MIAME
- (v) OTU
- (vi) NIH
- 2. Write short notes on (any three): $(5\times3=15)$
 - (i) Gene prediction methods
 - (ii) Sequence file format
 - (iii) Applications of bioinformatics in crop improvement
 - (iv) Transcriptomics
- 3. Differentiate between the following (any five): (3×5=15)
 - (i) Archival and derivative databases
 - (ii) System biology and functional biology
 - (iii) Bootstrap and Jackknife
 - (iv) Local and global sequence alignment