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~(¢) Solve the initial valueprobler :
i '. ‘ 2 dzy..
x = QY =A—8, Hj=4, y{i==1. (B0
dx
ATk
5. (haj Find the partial differential equation satisfied by

the following surface
z = flx —¥).

(b) Find the general solution of the partial differential
equation

U, P, = 0.

(c) Solve the following Cauchy problem
g, o = w(0,y) = e (6.5+6.5)

6. (a) Apply the method of separation of variables
u(x, y) = f(x) + g(y) to solve the following equation

w2+u?=1.
x y

(b) Find general solution of the following second order
partial differential equation with constant
coefficients

g, T Au + Bl = 0.

(¢) Classify the following equation and obtain general

solution by reducing it to canonical form
Vi, = By, = 0, x20, v=L. (7+7)
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1. (a) Show that the differential equation
(4x + 3yH)dx + 2xydy = 0 is not exact.

Find an integrating factor of form y", n being an
integer. Multiply by the integrating factor and find

the solution of the equation.

(b) Solve the initial value problem

(2x + 3y + Ddx + (4x+oy+ Ddy =0, y(-2)=2.
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(c) Solve (b) Find the general solution of the differential equation
ta ( }4— Jlx xdy=0 +3dy+2y 1
X tan C = poree Belsl s
y i (6+06) dX dx 1+62x

using the method of variation of parameters.
2. (a) Find the orthogonal trajectories of x>+ y? = J¢x,

¢ being an arbitrary constant. (¢) Find the general solution of
d’ dy
(b) Show that e?* and e are two linearly independent 2 P % —+ Xa‘f”ﬁtyz 2xIn(x) (6+6)
x?
solutions on oo < x < @ of the differential equation
dzy dy o Be 4. (a) Show that x=3¢™ y=2e" and x = e’ y=-2¢ are
T D
dx?  dx

two linearly independent solutions on every interval

Write the general solution. Find the solution that a <t < b of the linear system

satisfies the conditions

dx
¥(0) = 2, y{0) = 3. E:5X+3y’
(d) If y = (x+ 1) is a solution of d
Y
— = Axy
d’ dit

(x+1)2dxf’—3( +1) +3y=0,

Write the general solution.
find a linearly independent solution by reducing

the order. Write the general solution. (6+6) (b) Solve the linear Eymtem
dx dy
3. (a) Solve the initial value problem dat F e dt + 2y =sin(t),
d3y d?y dy dx d
——6 11—&6y 0, yi0)=1, 0) =0, &
dx? dx? dx v & i — e e 0.
¥'(0)=12.
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