[This question paper contains 8 printed pages.]

Your Roll No.

Sr. No. of Question Paper: 1352

Unique Paper Code : 32171602

Name of the Paper : Organic Chemistry V:

Spectroscopy

Name of the Course : B.Sc. (Hons.) Chemistry

Semester : VI

Duration: 3.5 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any six questions.
- 3. All questions carry equal marks.
- (a) A and B are two isomers of C₃H₆O based upon peaks obtained in spectral data recorded in ¹H NMR spectrophotometer: Identify A and B, give their IUPAC names and explain:
 - (i) A: ¹H NMR, (in CDCl₃): δ1.1(t,3H), δ2.1 (m,2H), δ 9.5 (t, 1H)

IR (in Nujol) wave number: 2720cm⁻¹ (doublet, m) and 1735cm⁻¹(s)

(ii) B: ${}^{1}H$ NMR, (in CDCl₃) $\delta 2.3(s,6H)$ IR (in Nujol) : 1710 cm⁻¹(s)

(b) Compound A shows strong peak in IR spectrum at 1717 cm⁻¹ and give positive test with DNP. on reaction with hydroxylamine and followed by a well known Beckmann rearrangement gives compound B. Compound B polymerizes to give polymer, C. Identify, give name and structural formula of the compounds A, B and C (polymer).

$$C_6H_{10}O$$
 (i) NH_2OH B H_2O C (Polymer)

- (c) λ_{max} of Acetone in hexane is 279 nm while in water is 264.5 nm. Assign the given peak and explain by drawing transitions involved showing HOMO-LUMO. (4,4,4.5)
- 2. (a) Using N,N-Dimethylaniline writing all necessary conditions and reagents give synthesis of:
 - (i) Methyl orange and
 - (ii) Malachite green

- (b) Give stereochemical structure of (-)-chloramphenicol, its IUPAC name, uses and the name of species from which it is isolated.
- (c) Calculate the λ max. for $\pi \rightarrow \pi^*$ in nm for the following compounds:

Homoannular conjugated diene's base value = 253 nm Heteroannular conjugated diene's base value = 215 nm Increment for each substitution

Alkyl substituent or ring residue = 5 nm

Exocyclic double bond = 5 nm

Double bond extending conjugation = 30 nm

Acyclic enone base value = 215 nm

P.T.O.

 α -Alkyl group or ring residue = 10 nm

β-Alkyl group or ring residue = 12 nm

 γ -Alky1 group or ring residue = 17 nm

for correction in solvent:

methanol/ethanol = 0 nm

water = +8 nm

Also calculate the λ max for both of the above compounds (i) and (ii) in water and ethanol using correction appropriately. (4,4,4.5)

- 3. (a) Give synthesis of Alizarin from anthraquinone.

 Give the structure of complex with Aluminium as mordant.
 - (b) Give the synthesis of Congo red dye. Mention the pH at which it gives the blue colour and red and explain with structure change.
 - (c) What is Leuco base in a triphenylmethane dyes? Explain with appropriate reaction. Give synthesis of crystal violet dye. (4,4,4.5)
- 4. (a) Calculate the frequency of C-H stretching vibration from the following data:

Force Constant $K = 5 \times 10^5$ gm sec⁻²

Mass of carbon atom = 20×10^{-24} gm

Mass of hydrogen atom = 1.6×10^{-24} gm

Velocity of the radiation(c) = 2.998×10^{10} cm sec⁻¹

(b) Attempt any four:

- (i) What is the source of IR radiations in IR spectrophotometer
- (ii) What are the Fundamental Vibrations?
- (iii) What are overtones in IR spectra?
- (iii) What is Fermi Resonance?
- (iv) Differentiate acetamide and ethyl amine using IR spectroscopy.
- (v) Differentiate in 1-Butyne and 2-Butyne using IR spectroscopy.
- (c) Assign the appropriate C=O stretching frequency against the following structures. Justify the answer:

7

Stretch frequencies are

- (a) 1745 cm^{-1}
- (b) 1780 cm^{-1}
- (c) 1815 cm⁻¹

(d) 1715 cm⁻¹

(4,4,4.5)

- (b) Outline the synthesis of Nylon-6,6 and its uses.
- (e) Write the mechanism involved when vinyl chloride in polymerised in presence of benzoyl peroxide? (4,4,4.5)
- 6. (a) (i) Define chemical shift and coupling constant.
 - (ii) How will you differentiate in between cis and trans cinnamic acid ¹H NMR spectroscopy.
 - (b) Give expected number of signals by ¹H NMR spectra recorded in CDCl₃ in each of the following compounds:

- (i) 1,2-dichloroethane
- (ii) Ethyl acetate
- (iii) cyclohexane (at low temperature)
- (iv) 2-chloroethanol
- (c) A compound with molecular weight 116 gave the following spectral information:

(i) UV (in ethanol): $\lambda_{\text{max}} = 283 \text{ nm } \epsilon_{\text{max}} = 22$

(ii) IR (in Nujol): 3000-2500 (b), 1715 (s), 1342 cm⁻¹ (w)

(iii) NMR (in CDCl₃): δ 2.12 (s, 3H) δ 2.60 (t, 2H) δ 2.25 (t, 2H) δ 11.1 (t, 1H)

Find the structural formula of the compound. (4,4,4.5)

- 7. (a) Give the Boots synthesis of Ibuprofen and its uses.
 - (b) Give the synthesis of chloroquine from mchloroaniline. Give its uses and side effects.

- (c) Give the structure of the main alkaloid present in curcumin. Discuss the therapeutic uses of curcumin. (4,4,4.5)
- 8. (a) Give the synthesis and uses of Buna-S rubber.
 - (b) (i) What is Dacron? Write structures of its monomer(s).
 - (ii) Give name and structures of two biodegradable polymers.
 - (c) How do you prepare Polyurethane? Mention two uses. (4,4,4.5)
- 9. An organic compound with molecular formula C₄H₉NO gave the following spectral data:-
 - (i) UV (in Ethanol): λ_{max} : 220 nm, ϵ max: 63
 - (ii) IR (in Nujol): 3500 cm^{-1} (m), 3402 cm^{-1} (m), 2960 cm^{-1} (w), 1682 cm^{-1} (s), 1610 cm^{-1} (s)
 - (iii) NMR (in $CDCl_3$): $\delta 1$ (d, 6H), $\delta 2.1$ (septet, 1H), $\delta 6.8$ (br s, 2H)

Calculate DBE, assign spectral peaks appropriately in spectral data, give structural formula and the name of the compound. (12.5)