13 MAY 2322 1315/22

[This question paper contains 8 printed pages.]

Your Roll Not Mireyi Con

Sr. No. of Question Paper: 1484

Unique Paper Code : 42353405

Name of the Paper : Sec-2 Mathematical

Typesetting System: LaTex

Name of the Course : B.Sc. Mathematical Science-

CBCS: Skill Enhancement

Semester : IV

Duration: 2 Hours Maximum Marks: 38

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts of each question.
- (i) Define footnotes and write appropriate commands in Latex with example?
 - (ii) Write the input command in latex to produce the following:

- $\int_{0}^{1} x^{5} \sqrt{\frac{1+x^{2}}{1-x^{2}}} dx.$
- (iii) What is the difference between the following commands in latex?
 - (a) \; and \:
 - (b) \ddots and \vdots.
- (iv) Correct the following input as per Latex commands:

2. (i) Create a latex file for the following output:

Latex Assignment

XYZ

University of Delhi,

Delhi.

- (ii) Explain the following environment with example:
 - (a) enumerate

- (b) itemize
- (c) math
- (d) array
- (iii) In an array environment, what is the meaning of these alignments: (c, 1, r, and &) Justify these alignments with an example?
- (iv) Define cases environment with example.
- 3. Write the code in LaTex to get the following output:

(a)
$$(y-a)^n \neq \sum_{k=0}^n a^{n-k}$$
.

(b)
$$(1+x)^{1/n} \neq 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \dots$$

(c)
$$\sqrt[7]{\frac{a+b}{c+d}} + \sqrt[4]{g}$$
.

(d) Consider the sets B₁, B₂, B₃.

Then
$$B_1 \cap (B_2 \cup B_3) = (B_1 \cap B_2) \cup (B_1 \cap B_3)$$
.

- 4. Write the code in LaTex to get the following output:
 - (a) The Difference equation

$$x_t = ax_{t-1} + b_t(t = 1,2,3,...)$$

has the solution

$$x_t = ax_0 + \sum_{k=1}^{t} a^{t-k} b_k (t = 1, 2, 3,)$$

(b) Define the discontinuous factor D, by

$$D_{t} = \frac{1}{\prod_{s=1}^{t} (1 + r_{s})}$$

$$=\prod_{s=1}^{t} \left(1+r_{s}\right)$$

(c)
$$\int \frac{e^x}{\sqrt[3]{1+e^x}} = \frac{3}{2} (1+e^x)^{3/2} + C$$

(d)
$$\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

 $\sin(-1) = \frac{(-1)^0}{1!} - \frac{(-1)^3}{3!} + \frac{(-1)^5}{5!} - \frac{(-1)^7}{7!} + \cdots$

5. (a) Write the command in PSTricks to draw the following picture.

- (b) Explain the command \psarc (0,0) {2.5} {10} {80}.
- (c) Write the command to draw an arrow at (3,2) of length 15 units in the direction of (1,1).
- (d) Write the command in PSTricks to plot the function $y = \sin x$. (6)
- 6. (a) Write a presentation in beamer with the following content:

Slide-1: Title: Odd

Step-1. Any integer that cannot be divided by 2 is an odd integer.

Examples: 1,3,5,7,....

Slide-2: Title: Even

Step-2. Any integer that can be divided by 2 is an even integer.

Examples: 2,4,6,8,....

Slide-3: Title: Composite

Step-3. Any integer that can be divided by atleast one other number (a factor not 1) other than itself. Examples: 4, 6, 8, 10,

(b) Using beamer prepares a presentation with the following content:

Slide 1: Title: Beamer presentation

Step-1, $\sin \alpha$ and $\cos \alpha$ are two trigonometric functions.

Slide 2: Title: Some trigonometry identities:

Step-2. $\sin^2\theta + \cos^2\theta = 1$ $2 \sin \theta \cos \theta = \sin 2\theta.$

Slide 3: Title: Beamer presentation

Step-3. Thank You

- (c) In beamer, write the command to produce the information about the title page that contains title, author, institute and date.
- (d) Write a presentation in beamer with the following content:

Slide-1: Title: Differentiable function

Step-1. Let f be differentiable at x = c. Then

$$f'(c) = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \right).$$

Slide-2: Title: Differentiable function

Step-2. Now

$$\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \right) \times (x - c)$$
$$= f'(c) \times 0.$$

Slide-3: Title: Differentiable function

Step-3. $\lim_{x\to c} f(x) = f(c)$. Therefore, f is continuous at x = c.