[Ms question paper contains 6 printed pages.]

2 5 MAY 2022

Your Roll No.....

Sr. No. of Question Paper: 1670

Unique Paper Code

: 42227637

Name of the Paper

: DSE: Solid State Physics of

Name of the Course

: CBCS: B.Sc. (Prog.) - DSE

Semester

: VI

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Answer five questions in all.
- 3. Question No. 1 is compulsory.
- 4. All questions carry equal marks.
- 5. Non-programmable scientific calculator is allowed.

1. Attempt any five:

 (3×5)

(a) Mention the lattice type and bases in CsCl structure with diagram.

- (b) Obtain the Miller indices of a plane which makes an intercepts at a/2, b/2 and 3c along the primitive axes of the simple cubic unit cell. Draw a neat diagram of the plane.
- (c) Determine the number of normal modes of vibration in a linear mono-atomic lattice of finite length in first Brillouin zone.
- (d) Describe low temperature behavior of Einstein's theory of specific heat of solids.
- (e) Calculate the Hall Coefficient when number of holes in a semiconductor is 10^{20} m⁻³. Given that $e = 1.6 \times 10^{-19}$ coulomb.
- (f) Distinguish between dia, para and ferro-magnetic materials on the basis of magnetic susceptibility.
- (g) Discuss the variation of polarizability with frequency.
- (h) Differentiate a superconductor with a perfect conductor.
- 2. (a) Mention the names of seven crystal systems in three dimensions with fourteen Bravais lattices included in them. Mention the unit cell characteristics of each system. (10)

- (b) For a bee lattice, determine the diffraction angle for 1st order diffraction maximum from the (220) set of planes with interplanar spacing 1.013 Å with monochromatic X- rays of wavelength 1.790 Å.
- 3. (a) Discuss the importance of reciprocal lattice space in understanding the structure of a crystal. (5)
 - (b) Prove that the reciprocal lattice vector \vec{G}_{hkl} is perpendicular to the crystal plane (hkl) of a cubic crystal and that the interplanar spacing d_{hkl} is given as

$$d_{hkl} = \frac{2\pi}{|\vec{G}_{hkl}|} \tag{5}$$

- (c) A direct lattice has the following primitive translation vectors: $\vec{a} = 2(i + j)$, $\vec{b} = 2(j + k)$, $\vec{c} = 2(k + i)$. Find out the reciprocal lattice vectors and type of lattice. (5)
- The dispersion relation for the vibrational modes of diatomic linear lattice having masses m and M(m < M) is

 $\omega^4 - 2\alpha \left(\frac{1}{M} + \frac{1}{m}\right)\omega^2 + \frac{4\alpha^2}{mM}\sin^2 K\alpha = 0$

where the symbols have their usual meanings.

- (a) Obtain expressions for acoustical and optical curves. Draw the dispersion curves. (4,2)
- (b) Explain its behaviors observed in acoustical and optical branches when
 - (i) m becomes equal to M.
 - (ii) m reduces to zero.
 - (iii) M increases to infinity. (2,2,2)
- (c) Determine the smallest possible wavelength allowed by this diatomic lattice in the first Brillouin zone. (3)
- 5. (a) Describe qualitatively the Einstein's theory of specific heat of solids. Describe its shortcomings.

 (5,2)
 - (b) Describe how Debye improved the Einstein's theory? Discuss qualitatively Debye's theory of specific heat. (6)

- (c) The Debye temperature for Aluminum is 418 K.

 Calculate the frequency of the highest possible lattice vibration in Aluminum. (2)
- 6. (a) Describe in detail n- type and p- type semiconductors.
 - (b) Define conductivity and mobility. Obtain expressions for conductivity and mobility for a highly doped n-type semiconductor. (6)
 - (c) What will be the mobility of electrons in Cu if it has 9×10^{28} valence electrons per cubic meter and its conductivity is 6×10^7 ohm⁻¹meter⁻¹? (3)
- 7. (a) Describe Langevin theory of paramagnetism and hence, obtain expression of magnetic susceptibility.

 (10)
 - (b) Assuming the existence of Weiss molecular field, obtain modified expression of magnetic susceptibility for a paramagnetic substance.

(5)

8. (a) Obtain an expression for the local electric field at an atom in a dielectric medium. (8)

(b) Explain Meissner effect in superconductors.

(5)

(c) For a given specimen of a superconductor, the critical fields are 1.4×10^5 A/m and 4.2×10^7 A/m respectively for 14K and 13 K. What will be the critical field at 4.2 K? (2)