[This question paper contains 8 printed pages.]

Your Roll No ..

Sr. No. of Question Paper: 1590

Unique Paper Code : 42177926

Name of the Paper : DSE: Organometallics,

Bio-inorganic Chemistry, Polynuclear Hydrocarbons and

UV, IR Spectroscopy

Name of the Course : B.Sc. (Prog.)

Semester : VI

Duration: 3.5 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt three questions from Section A and three from Section B.

SECTION A

(Attempt any three questions)

 (a) Compound A when heated with a soluble chloride and concentrated H₂SO₄ gives orange red vapours of compound B. When an alkali is added to A it gives yellow coloured compound C which on P.T.O. acidifying converts back to A. Identify compounds A, B and C and write the chemical reactions involved.

- (b) Draw and explain the structure of Ferrocene.
- (c) What do you mean by cooperativity in haemoglobin? Discuss the role of haemoglobin and myoglobin in biological system. (4,4,4.5)
- (a) Discuss 18-electron rule for metal carbonyls. Predict which of the following molecule does not obey 18-electron rule
 - (i) [Fe(CO)₅]
 - (ii) [Cr(CO),]2-
 - (iii) [Mn(CO), Cl,]2-
 - (iv) $[(\eta^5 C_5 H_5)_2 Fe]$
 - (b) With reference to molecular orbital diagram explain that CO acts as both Lewis acid and Lewis base.
 - (c) With the help of diagram explain the mechanism of sodium-potassium pump. Why it is considered as an active transport. What is the source of energy for its functioning? (4,4,4.5)

- (a) Give Reasons for the followings:
 - (i) Nickel tetracarbonyl is a stable carbonyl but Manganese does not form stable mononuclear carbonyl.
 - (ii) IR stretching frequency of CO bond is different in terminal and bridging carbonyls.
 - (b) Discuss the role of Na+ and Mg+2 ions in biological
 - (c) Give method of preparation of potassium ferrocyanide. What is the oxidation state of iron in it? How is it used for the identification of Zn+2 ions present in an organic salt? Give chemical (4,4,4.5)reactions.
- (a) What happens when (give balanced chemical equations)
 - (i) KMnO₄ reacts with a ferrous salt in acidic medium.
 - (ii) A solution of potassium dichromate containing dilute H2SO4 and ether is treated with H₂O₂.

- (iii) Sulphuric acid is added to a saturated solution of K₂CrO₄.
- (iv) $K_4[Fe(CN)_6]$ is treated with copper sulphate.
- (b) Discuss lead-poisoning and mercury-poisoning in brief.
- (c) What are organometallic compounds? Which of the followings are not organometallic compounds?
 - (i) Zeise's Salt
 - (ii) Cisplatin
 - (iii) Ferrocene
 - (iv) Sodium ethoxide
 - (v) Grignard Reagent

(4,4,4.5)

SECTION B

(Attempt any three questions)

5. (a) What happens when:

- (ii) + 2H₂ Ni/△ ?
- (b) Pyridine primarily undergoes nucleophilic substitution at 2- or 6- position. Explain
- (c) How will you convert:
 - (i) Ethyl acetoacetate Ketonic hydrolysis Acetone
 - (ii) Ethyl acetoacetate Acidic hydrolysis Acetic acid
- (d) Discuss the theory of electronic spectroscopy with a neat diagram showing electronic transitions in 1,3-butadiene.
- (e) Explain: chromophores. (2,2,4,2.5,2)
- 6. (a) Giving reasons, predict the C=O frequency shift in the given aldehydes, C=O stretching frequencies are 1665 cm⁻¹, 1700 cm⁻¹ and 1730 cm⁻¹.

(b) Calculate the absorption maximum (λ_{max}) for $\pi \rightarrow \pi^*$ transition in the following compounds using Woodward-fieser rules.

(i)	(ii) =0
	(11)

Parental/Base values Acyclic/ Heteroannular dienes	λ _{max} (nm) 214	Increments Alkyl substitution/ Ring	(nm)
Homoannular dienes	253	residue	+5
α, β unsaturated Acyclic ketones	215	Additional conjugation	+30
α, β unsaturated Aldehydes	210	Exocyclic double bond	+5
		α-alkyl substituent	+10
		β-alkyl substituent	+12

- (c) Write notes on: Bathochromic shift
- (d) How will you distinguish the following pair of compounds using IR spectra?
 - (i) CH₃CH₂COOCH₃ and CH₃COCH₃
 - (ii) $\text{CH}_3\text{CH}_2\text{CH}_2\text{COOH}$ and $\text{CH}_3\text{CH}_2\text{CH}_2\text{CHO}$ (4,3,1.5,4)
- 7. (a) Write the name reaction Claisen ester condensation for the synthesis of ethyl acetoacetate. Explain with mechanism.

- (b) Explain the Keto-enol tautomerism by taking active methylene compound as an example.
- (c) How will you prepare the following from ethyl acetoacetate: (Attempt any six)
 - (i) Gluteric acid
 - (ii) Crotonic acid
 - (iii) Cinnamic acid
 - (iv) 4-methyluracil
 - (v) Pentane 2,4-dione
 - (vi) Methylisoxazolone
 - (vii) Cyclohexyl methyl ketone
 - (viii) Ethyl methyl ketone (4,2.5,6)
- 8. (a) How will you carry out the following conversions?
 - (i) Anthracene to 9-bromoanthracene
 - (ii) Naphthalene to Decalin
 - (iii) Furan to 2-nitrofuran
 - (iv) Pyridine to 3-pyridinesulphonic acid
 - (v) Pyrrole to 2-formylpyrrole

- (b) How do you synthesize anthracene using Haworth synthesis?
- (c) Pyridine is more basic than pyrrole. Explain
- (d) Draw the resonating structure of naphthalene. (5,3,3,1.5)