Name of the Department	:	Physics
Name of the Course	:	B.Sc. (Hons.) Physics (CBCS)
Name of the Paper	:	Mathematical Physics-II
Semester	:	III
Unique Paper Code	:	32221301
Question Paper	:	Set-C

Duration : 3 Hours

Maximum Marks: 75

Attempt any four questions. All questions carry equal marks.

Q1.Using method of separation of variables, solve 2-D equation $\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right)$ subjected to the conditions

$$u(a, \theta, t) = 0,$$

$$u(r, \theta, 0) = 0 \text{ and}$$

$$(\frac{\partial u}{\partial t})_{t=0} = g(r, \theta)$$
(18.75)

Q2. (a) Using one dimensional heat equation $\frac{\partial v}{\partial t} = h^2 \frac{\partial^2 v}{\partial x^2}$, find the temperature V (x, t) in a bar of length which is perfectly insulated and whose ends are kept at temperature zero and the initial temperature is

$$f(x) = x \quad \text{when } 0 < x < \frac{L}{2}$$
$$= L - x \quad \text{when } \frac{L}{2} < x < L \tag{10.75}$$

(b) Show that
$$\int_0^a x^{m-1} (a-x)^{n-1} dx = a^{m+n-1} \beta(m,n)$$
 (4)

(c) Show that the relation between beta and gamma function is

$$\beta(\mathbf{m},\mathbf{n}) = \frac{\Gamma(\mathbf{m})\Gamma(\mathbf{n})}{\Gamma(\mathbf{m}+\mathbf{n})}$$
(4)

Q3.Given, f(x) = x for 0 < x < 2

- (a) Find the Fourier cosine series of the function in half range. (10.75)
- (b) Sketch the function. (3)
- (c) Using Parseval's identity deduce that $\frac{\pi^4}{96} = \sum_{1}^{\infty} \frac{1}{n^4}$ (5)

Q4. (a) Find the complex form of the Fourier series of $f(x) = \exp(-x)$ for $-1 \le x \le 1$

(10.75)

(b) Show that

(i)
$$(x^2 - 1) P'_n(x) = n (x P_n(x) - P_{n-1}(x))$$

(ii) $x J'_n(x) = -n J_n(x) + x J_{n-1}(x)$ (4, 4)

Q5. (a) Discuss the nature of singularity at x=1 of the differential equation

$$(x^{2}-1) y'' + x y'-y=0$$
(5)

(b) Solve the differential equation $(x - x^2)\frac{d^2y}{dx^2} + (1 - 5x)\frac{dy}{dx} - 4y = 0$ using Frobenius method about x=0. (13.75)

Q6. (a) Solve the differential equation in power series, y''+x y'+y=0. (10.75)

(b) Show that
$$\int_{-1}^{+1} [\Pr(x) \Pr(x)] dx = \frac{2}{2n+1} \delta_{mn}$$
 (8)