Name of the course	: CBCS B.Sc. (H) Mathematics
Unique Paper Code	: 32351302
Name of Paper	: BMATH306-Group Theory-1
Semester	: 111
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

Show that the set S of all ordered pairs (a, b) of non-zero real numbers is an abelian group under the multiplication defined by

 (a, b)(c, d) = (ac, bd) ∀ a, b, c, d ∈ S

Consider the group $G = GL(2, \mathbf{R})$ under multiplication. Then find the centralizer of $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Also, find the center of *G*.

Let $A = \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}$. Find A^{-1} in $SL(2, Z_5)$. Verify the answer by direct calculation.

2. Find all the subgroups of Z:

a) containing 20Z.

b) contained in 20Z.

Prove that an abelian group which contains two distinct elements which are their own inverses must have a subgroup of order 4.

Suppose a group contains elements *a* and *b* such that |a| = 4 and |b| = 5 and that $a^{3}b = ba$. Find |ab|.

3. State Cayley's theorem and verify theorem for U(10).

Let *a* and *b* be elements of a group *G*. If O(a) = 12, O(b) = 22 and $< a > \cap < b > \neq \{e\}$. Prove that $a^6 = b^{11}$.

Find a non-cyclic group of order 4 in U(40).

4. Let *p* be a prime. If a group has more than (p - 1) elements of order *p*. Then prove that the group cannot be cyclic.

Let $\beta = (1 \ 2 \ 3)(1 \ 4 \ 5)$. Write β^{99} as a cycle.

Given a permutation $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{pmatrix}$

- a) Write α as product of disjoint cycle.
- b) Find $|\alpha|$.
- c) Find α^{-1} and verify by calculation.
- 5. Let *G* be the additive group $\mathbf{R} \times \mathbf{R}$ and $H = \{(x, x) : x \in \mathbf{R}\}$ be a subgroup of *G*. Give a geometric description of cosets of *H*.

If N is a normal subgroup of order 2 of a group G then show that $N \subseteq Z(G)$.

If *H* is a subgroup of a group *G* such that (aH)(Hb) for any $a, b \in G$ is either a left or a right coset of *H* in *G*, prove that *H* is normal.

6. If \emptyset be a homomorphism from Z_{30} onto a group of order 5, determine Ker \emptyset .

Let N be a normal subgroup of a group G. If N is cyclic subgroup of G then prove that every subgroup of N is normal in G.

Prove that the mapping from $x \to x^6$ from C^* to C^* where C^* denotes the set of non -zero complex numbers is a homomorphism. What is the kernel?