Name of Course	:	CBCS(LOCF) B.Sc.(H)Mathematics
Unique Paper Code	:	32351301
Name of Paper	:	BMATH305-Theory of Real Functions
Semester	:	III
Duration	:	3 hours
Maximum Marks	:	75 Marks

Attempt any four questions. All questions carry equal marks.

1. Prove that $\lim_{x \to -1} \frac{x^2 - 5}{x^2 + 7} \neq \frac{-5}{7}$.

Use $\varepsilon - \delta$ definition of limit to prove that $\lim_{x \to 1} \frac{x^{3}-3}{x^{2}+1} = -1$.

Also prove that $\lim_{x\to 0} x^2 sgn(x)$ exists. Here sgn denotes the signum function.

2. Let $A \subseteq \mathbb{R}$, functions $f, g: A \to \mathbb{R}$, *c* be a cluster point of A and $L \in \mathbb{R}$, $L \neq 0$.

If $\lim_{x\to c} f = L$ and $\lim_{x\to c} g = \infty$, then find $\lim_{x\to c} fg$.

If $\lim_{x\to c} f = 0$ and $\lim_{x\to c} g = \infty$ then justify by an example that $\lim_{x\to c} fg$ need not be infinity.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2, & \text{if } x \text{ is rational} \\ 5x - 6, & \text{if } x \text{ is irrational} \end{cases}$$

Find all the points at which f is continuous.

Let $f: \mathbb{R} \to \mathbb{R}$ be an additive function ,that is, f(a + b) = f(a) + f(b) for all $a, b \in \mathbb{R}$. Prove that if f is continuous at some point x_0 , then f is continuous at every point of \mathbb{R} .

4. Show that $f(x) = \frac{x-1}{x+1}$ is uniformly continuous on $[0, \infty)$ and $g(x) = Cos(\frac{1}{x})$ is not uniformly continuous on $(0, \infty)$.

If *f* is continuous on [0, 2] and f(0) = f(2), then prove that there exists $x, y \in [0,2]$ such that |y - x| = 1 and f(x) = f(y).

5. Find the points of relative extrema of the following function on the specified domain $f(x) = |x^2 - 25|, \quad -7 \le x \le 7$.

Prove that $ex \leq e^x$, for all $x \in \mathbb{R}$.

Use Mean Value Theorem to find an approximate value of $\sqrt{51}$.

6. If $x \in [0,1]$ and $n \in \mathbb{N}$, show that

$$\left| ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} \right) \right| < \frac{x^{n+1}}{n+1}.$$

Use this to approximate ln(1.5) with an error less than 0.01.

Use Taylor's theorem to prove that for all x > 0

$$1 + x + \frac{x^2}{2} + \frac{x^3}{3!} < e^x < 1 + x + \frac{x^2}{2} + \frac{x^3}{3!}e^x \,.$$