Name of Course : CBCS(LOCF) B.Sc. (H) Mathematics

Unique Paper Code : 32351501

Name of Paper : **BMATH511-Metric Spaces**

Semester : V

Duration : 3 hours

Maximum Marks : 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Let X = C[0, 2], the space of all continuous functions defined on [0, 2]. Let

$$d_1(f,g) = \int_0^2 |f(x) - g(x)| dx$$
 and $d_{\infty}(f,g) = \sup\{|f(x) - g(x)| : x \in [0,2]\}.$

Compute the distance $d_1(f,g)$ and $d_{\infty}(f,g)$ where

$$f(x) = \begin{cases} \sin x : 0 \le x < \frac{\pi}{4} \\ \frac{1}{\sqrt{2}} : \frac{\pi}{4} \le x \le 2 \end{cases} \text{ and } g(x) = \begin{cases} \cos x : 0 \le x < \frac{\pi}{4} \\ \frac{1}{\sqrt{2}} : \frac{\pi}{4} \le x \le 2 \end{cases}.$$

Let X be any non-empty subset of \mathbb{R} . Define a function $d: X \times X \to [0, \infty)$ as

$$d(x,y) = \begin{cases} |x - y|, & \text{if } |x - y| \le 1\\ 1, & \text{if } |x - y| \ge 1 \end{cases}$$

Show that d is a metric on X and d is bounded.

Let $X=\mathbb{R}^3$ and d be the metric on \mathbb{R}^3 given by $d(x,y)=\sum_{i=1}^3|x_i-y_i|$ where $x=(x_1,x_2,x_3)$ and $y=(y_1,y_2,y_3)$. Let $\{x^{(n)}\}$ be a sequence in \mathbb{R}^3 where $x^{(n)}=\left(\frac{n}{n+1},\frac{1}{n^3},1-\frac{1}{n}\right),n\in\mathbb{N}$. Is $\{x^{(n)}\}$ convergent in \mathbb{R}^3 ? If yes, find the limit.

Is $d(x, y) = |x - y|^3$ a metric on \mathbb{R} ? Justify your answer.

(6+6.75+4+2)

2. Let $a, b \in \mathbb{R}$ and a < b. Show that the open interval (a, b) is an incomplete subspace of \mathbb{R} . Let Y be a finite subset of \mathbb{R} with usual metric. Is Y open in \mathbb{R} ? Justify. If not, then give an example of a metric space in which a finite set may be open.

Let $(C[0,1], d_1)$ be a metric space with the metric defined by

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Let $\{h_n\}$ be a sequence in C[0, 1] defined by

$$h_n(x) = x^{1/n}, \quad x \in [0,1]$$

Show that $h_n \to h$ in $(C[0,1], d_1)$, where h(x) = 1 for all $x \in [0,1]$. Does the same statement hold in $(C[0,1], d_{\infty})$ where $d_{\infty}(f,g) = \sup\{|f(x) - g(x)| : x \in [0,1]\}$? Justify.

Give an example of a set which is neither open nor bounded. Justify your answer.

(9+6+3.75)

3. Find the closure and interior of the set $A = \{(x, y) : xy = 1\}$ as a subset of \mathbb{R}^2 (equipped with the Euclidean metric).

If *D* is an open subset of \mathbb{R} , which contains all rational numbers lying between 0 and 2, then does $\sqrt{2} \in D$? Justify your answer.

Consider the set $X = A_1 \cup A_2$, where $A_1 = (0, 1)$ and $A_2 = [2, 3)$. Show that A_1 and A_2 are both open as well as closed in X.

Let (X, d) be a metric space and $B = S(x_0, r)$ be the open ball with centre at $x_0 \in X$ and radius r > 0. Show that $d(B) \le 2r$, where d(B) denotes the diameter of the set B. Give an example to show that in general the equality may not hold in $d(B) \le 2r$.

(4+4+4+6.75)

4. Let d denote the Euclidean metric in \mathbb{R}^2 and d_1 be the metric defined in \mathbb{R}^2 by

$$d_1(x,y) = |x_1 - y_1| + |x_2 - y_2|$$
 for $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$.

Let $f: (\mathbb{R}^2, d) \to (\mathbb{R}^2, d_1)$ be given by $f(x_1, x_2) = (2x_1, x_2)$. Prove that f is continuous on \mathbb{R}^2 .

Let \mathbb{R} be equipped with the usual metric and $g: \mathbb{R} \to \mathbb{R}$ be continuous. Let $A = \{x \in \mathbb{R}: g(x) \ge 0\}$. Show that A is closed in \mathbb{R} . Is A complete with respect to the induced metric?

For the subset $E = \{((-1)^n \frac{1}{n}, (-1)^n) : n \in \mathbb{N}\}$ of \mathbb{R}^2 (equipped with the Euclidean metric), find \overline{E} .

Let (X, d) and (Y, ρ) be two metric spaces and $h: X \to Y$ be a bijection. Show that h is a homeomorphism if and only if for all subsets A of X,

$$h(\bar{A}) = \overline{h(A)}$$
. (6+3.75+3+6)

5. Let X = (-1, 1) and Y = (0, 1) be subsets of the usual metric space \mathbb{R} . Are the spaces X and Y homeomorphic to each other? Justify your answer. What if we take $X = \mathbb{R}$ and Y = (0, 1)? Justify your answer.

Show that isometry from (X, d_X) into (Y, d_Y) is injective. Is every isometry from (X, d_X) onto (Y, d_Y) is a homeomorphism? Justify.

Prove that every contraction map on a metric space is uniformly continuous.

Let \mathbb{R}^2 be the Euclidean metric space. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a map defined by T(x,y) = (x,0). Prove or disprove that T is a contraction map. Also, find the fixed point(s) of T.

(6+4+3.75+5)

6. Let *A* and *B* be two connected subsets of *X* and $A \cap B \neq \phi$. Show that $A \cup B$ is connected. In \mathbb{R}^2 (eqquiped with the Euclidean metric), find if the union of $A = \{(x,y): x^2 + y^2 \leq 1\}$ and $B = \{(x,y): (x-2)^2 + y^2 < 1\}$ is connected or not? Justify.

Let (X, d) be a compact metric space and let d_1 be the metric on X defined by

$$d_1(x,y) = \min\{1, d(x,y)\}, \quad x, y \in X$$

Then prove that (X, d_1) is compact.

Prove that every continuous real valued function f on a compact metric space attains its infimum. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{1}{1+x^2}$. Find the infimum of f. Is the above statement applicable for $f(x) = \frac{1}{1+x^2}$? Justify.

Examine the compactness of the set $B = \{(x, y) \in \mathbb{R}^2 : x = 0\}$.

(6+4+6+2.75)