Unique Paper Code 3221401 OC

Mathematical Physics III Name of Paper

Name of Course **B.Sc.(Hons.)Physics-CBCS**

Semester IV

Duration: 3 Hours Maximum Marks: 75

All questions carry equal marks. Attempt four questions

Use of Scientific calculator is allowed

1. Prove that $\cos^{-1} z = \frac{1}{i} \ln(z + \sqrt{z^2 - 1})$ for the principal branch and then find all the values of $\cos^{-1} i$.

Locate and name the singularities of the following functions

$$f(z) = cosec(\frac{1}{z^2})$$

$$f(z) = \sqrt{\frac{z}{(1-z)}}$$

2. Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in a Laurent's series valid for

$$1 < |z| < 2$$

 $|z - 1| > 2$

$$|z - 1| > 2$$

Find the residue of $f(z) = \exp\left(\frac{3}{z}\right) at z = 0$

3. Using the method of contour integration prove the following

$$\int_0^\infty \frac{\sin x}{x} \ dx = \frac{\pi}{2}$$

$$\int_0^\infty \frac{dx}{x^4 + 1} = \frac{\pi}{2\sqrt{2}}$$

4. Determine the Fourier transform of xe^{-x^2}

If $F(\omega)$ is the Fourier transform of f(x), determine the Fourier transform of $f(x)\sin px$

Where p > 0

5. Solve the following simultaneous differential equations using Laplace Transforms

$$2x(t) - y(t) - y'(t) = 4(1 - e^{-t})$$

$$2x'(t) + y(t) = 2(1 + 3e^{-2t})$$

subject to the conditions x(0) = y(0) = 0

$$y'(t) = \frac{dy}{dt}$$
; $x'(t) = \frac{dx}{dt}$

Determine the inverse Laplace transform of the following function

$$F(s) = \frac{1}{s(s^2+1)}$$

6. Evaluate the Laplace transform of $f(t) = \left\{\frac{1 - e^{-t}}{t}\right\}$

Given
$$f(x) = 1 - x^2$$
 for $|x| < 1$
 $f(x) = 0$ for $|x| > 1$

Determine the Fourier transform of f(x)

Evaluate the following integral $\int_0^3 \delta(x+1)(3x-5)dx$

18.75