Roll No.

Name of the Department	:	Department of Physics and Astrophysics
Name of Course	:	B.Sc. Hons CBCS
Semester	:	IV - Semester
Name of the Paper:	:	Analog Systems and Applications
Unique Paper Code	:	32221403_OC
Question paper Set number	:	Set 2
Duration	:	3 hours
Max. Marks	:	75 marks

Attempt <u>FOUR</u> questions in all. All questions carry equal marks

(Given : $\varepsilon_o = 8.85 \times 10^{-12} F/m$; $k = 1.38 \times 10^{-23} J/K$; $q = 1.6 \times 10^{-19}$ C)

Q1

- (a) Sketch the variation of the space charge, depletion region, electric field and electrostatic potential barrier as a function of distance across the junction, for an unbiased p-n Junction. Obtain an expression for the width of depletion region for an unbiased p-n junction diode. (15)
- (b) Determine the forward bias voltage applied to a silicon diode to cause a forward current of 10mA and reverse saturation current of $2.5 \mu A$ at room temperature. (3.75)

Q2

- (a) In a full-wave rectifier, the voltage applied to each diode is 240sin377t, the load resistance is 2000Ω and each diode has a forward resistance of 400Ω . Determine the (i) Peak, average and *rms* value of current (ii) efficiency of the rectifier and (iii) ripple factor. (7)
- (b) Determine the maximum allowable Zener current for a Zener diode (20 V, 1200 mW) working as a voltage regulator. Also determine the range of input voltage to keep Zener diode under regulation if the values of limiting resistance and the fixed load resistance are $1k\Omega$ and $20k\Omega$ respectively. Support your answer with the voltage regulator circuit diagram. (8)

(c) Give two advantages and two limitations of using a LED. What is the wavelength of emitted electromagnetic radiation if the band gap value of a semiconductor is 1.43 eV.
 (3.75)

Q3

- (a) Describe the construction of a transistor including emitter, base and collector. Explain how current flows due to charge carriers in *npn* transistor. (3.75)
- (b) Define current gain in CB configuration (α) and current gain in CE configuration (β).
 Derive the relation between them.
 (3)
- (c) Find the following for the circuit below,
 - (i) *Ic*.
 - (ii) V_E .
 - (iii) V_{CC}.
 - (iv) VCE.
 - (v) V_B .
 - (f) R_1 .

Q4

(a) Draw the circuit diagram of an RC coupled amplifier. Give the AC equivalent circuit in low, mid and high frequency range and state the associated assumptions for each frequency range . Derive an expression for voltage gain in low frequency region.

(8.75)

(12)

- (b) Define stability factor. Explain how addition of emitter resistance enhances the stability of the fixed bias circuit. (6)
- (c) For an *npn* transistor $\alpha = 0.98$, $I_E = 10 \text{ mA}$ and the leakage current $I_{CBO}=0.4\mu A$. Calculate the values of I_C , I_B , β and I_{CEO} . (4)

- (a) An amplifier has a mid-band gain of 100 and a bandwidth of 250 kHz. If 4% negative feedback is introduced, find the new bandwidth and gain.
 (4)
- (b) Derive the expression for frequency of oscillation and the condition for sustained oscillations for a RC phase shift oscillator. (9)
- (c) A Colpitts oscillator is designed with capacitor $C_1 = 100pF$ and $C_2 = 7500pF$ and a variable inductor. Determine the range of inductance, if the frequency of oscillations is to vary between 950 kHz to 2050 kHz. (5.75)

Q6

(a) Determine the value of the resistance R the given circuit if the gain of the circuit is 10.

(5)

- (b) Derive an expression for frequency of oscillations and the condition for sustained oscillations for a Wien bridge oscillator using op-amp. In which frequency range it can be used. (8.75)
- (c) Derive an expression for output of an ideal integrator. What are the limitations of ideal op-amp integrator? Give the circuit of practical integrator and explain how these limitations can be overcome.(5)

Q5