Unique Paper Code : 32171101

Name of the Paper : C – 1 Inorganic Chemistry

Name of the Course: B.Sc.(H) Chemistry

Semester : I

Duration : 3 hours

Maximum Marks : 75

Instructions for Candidate

Attempt four questions in all.

- (a) Explain why s-orbital is spherical in shape? How many radial and angular nodes are there in
 2p and 3d orbital? Specify their location.
 - (b) Draw neatly labelled diagrams for radial probability distribution curves for 2s,3s,3p and 3d Orbitals.
 - (c) Calculate the percentage ionic character in LiF from the following data:

$$\mu_{LiF} = 6.32 \text{ D}$$
 and $d_{LiF} = 156 \text{ pm}$

- (d) In H₂O, H₂S, H₂Se, H₂Te the bond angle decreases though all have the same bent shape. Why?
- (e) Explain the Bents rule and discuss the structure of PCl_3F_2 molecule on the basis of Bents rule. (5 x 3.75)
- 2. (a) Give reasons why
 - (i) PbCl₄ is more covalent than PbCl₂
 - (ii) BeCl₂ has zero dipole moment while H₂S has some.
 - (b) Explain why
 - (i) Half filled and fully filled orbitals are associated with extra stability?
 - (ii) NO₂ is bent whereas CO₂ is linear.
 - (c) Write time independent Schrodinger equation in three dimensional motion and explain various terms involved .What is eigen function? Show that Schrodinger wave equation for H atom is eigen value equation.
 - (d) Calculate the radius ratio for an ionic crystal when the coordination number of cation is 4.
 - (e) Calculate the effective nuclear charge for 3d & 4s electrons of copper using Slaters rules.

 (5×3.75)

- 3. (a) (i) Using VSEPR theory, predict the shapes of the following: XeO₂F₂, PF₅, PF₆, ICl₄. NO2 +.
 - (ii) Write the resonating structures for N_3^- and OCN^-
 - (b) What are the acceptable solutions to Schrodinger wave equation.
 - (c) Write a short note on Mulliken Jaffe scale of electronegativity.
 - (d) Explain Band Theory? On the basis of band theory explain why the melting point of chromium is greater than that of Zn.
 - (e) State Heinsberg's uncertainty principal. Is this limitation or uncertainty dependent on the Inaccuracy of the measuring instrument? Explain. (5 x 3.75)
- 4. (a) Draw molecular orbital energy level diagram of O₂²- and NO⁺. Which has higher bond energy?
 - (b) What are normal and orthogonal wave functions? Write mathematical expressions for normalized and orthogonal wave functions. What is their significance?
 - (c) Determine the wavelength of a photon (in nm) emitted during transition from n=5 to n=2 in the Hydrogen atom.
 - (d) Explain why: i) H₂O is liquid while H₂S is a gas.
 - ii) Electron gain enthalpy of Nitrogen is lower than oxygen.
 - (e) Explain why i) PCl₃ is polar but BCl₃ is non-polar
 - ii) ice floats on water?

 (5×3.75)

5. (a) On which law is the Born Haber cycle based? Construct the cycle and calculate Lattice energy For CaO using following data:

Sublimation energy=178 kJ/mol, First I.E. = 590 kJ/mol, Second I.E. = 1150 kJ/mol, Dissociation energy=498 kJ/mol, First E.A. = -141 kJ/mol, Second E.A. =798 kJ/mol, Heat of Formation= -635 kJ/mol

- (b) Explain why i) NaCl is more ionic than CuCl?
 - ii) SnCl₂ is solid while SnCl₄ is liquid at room temperature.
- (c) Explain why SiCl₄ shows a lower boiling point than CCl₄, though molar mass of SiCl₄ is greater than that of CCl₄.

- (d) Explain why i) MgSO₄.7H₂O is soluble in water whereas BaSO₄ not?
 - ii) First ionisation energy of Al is less than Mg but reverse is true for second ionisation energy of Al.
- (e) Why do the solubilities of the sulphate of alkaline earth metals decrease from Be to Ba? (5×3.75)
- 6. (a) Derive the Born Lande Equation and explain the various terms involved.
 - (b) What are rules of hybridization? What are equivalent and Non equivalent hybrid orbitals and their significance?
 - (c) What is de Broglie equation and how does this equation prove one of Bohrs postulates $mvr = nh/2\pi$
 - (d) Why is [XeO₆]⁴ octahedral whereas XeF₆ is disordered one?
 - (e) Why is the sequence of energies of molecular orbitals changes after Nitrogen molecule? Give the stability order of $O_2,O_2^-,O_2^{2-},O_2^{2+}$ (5 x 3.75)

Unique Paper Code : 32171101

Name of the Paper : C-1 Inorganic Chemistry

Name of the Course : B.Sc.(H) Chemistry

Semester : I

Duration : 3 hours

Maximum Marks : 75

Instructions for Candidate

Attempt any four questions .All questions carry equal marks

1.(a) Using VSEPR theory, write the hybridization & give the geometry & shapes of the followings:

XeOF₄, I₃-, XeO₂F₂, H₃O⁺, ClF₃

- (b) What are isoelectronic ions? How effective nuclear charge affects the radii of isoelectronic ions : N^{3-} , O^{2-} , F^{-} , Na^{+} , Mg^{2+} , Al^{3+} ?
- (c) Calculate limiting radius ratio for coordination no.8.
- (d) (i) State the physical significance of ψ and $[\psi]^2$
 - (ii) Sketch the radial probability function $a_{o}r^{2}R^{2}$ for $4d_{xy}$ and $3p_{z}$ orbital.
- (e) Explain why (i) Electron affinity of Cl is higher than F
 - (ii) Dipole moment of NH₃ is greater than that of NF₃?

(5x3.75)

- 2. (a) Explain the significance of Heisenberg Uncertainty Principle for micro and macro Particles.
 - (b) Find out electron gain enthalpy (electron affinity) using following data:

Enthalpy of formation = 381 KJ/molLattice energy = 757 KJ/mol

Ionization enthalpy = 496 KJ/mol

Dissociation energy (Cl_2) = 121 KJ/mol

Sublimation energy (Na metal) = 108 KJ/mol

- (c) Explain why (i) NCl₅ does not exist whereas PCl₅ exists
 - (ii) Lattice energy of alkali metal fluorides decreases from LiF to CsF.
- (d) (i) Explain why carbonate ion (CO_3^{2-}) is planar while sulphate is not.
 - (ii)H₂SO₄ is a syrupy liquid. Explain.
- (e) Write a short note on bents rule and discuss the structure of R_3PF_2 molecule on its basis. (5x3.75)
- 3. (a) (i) Explain why hybrid orbitals form strong bonds?
 - (ii) Explain why XeF₂ is a linear Molecule?
 - (b) How cartesian coordinates are related to polar coordinates? Explain giving relevant diagram and relationship.
 - (c) Why is MgSO₄ soluble in water whereas BaSO₄ not?
 - (d) What do you understand by the term polarizing power and polarizability? How do

 These influence the character of a compound? Which of the following will exhibit
 greater polarizing power and why? Ca²⁺or Cu
 - (e) The electronegativities of hydrogen and fluorine are 2.1 and 4.0.Calculate the percentage ionic character in HF. (5x3.75)
- 4.(a) Write the Schrodinger's wave equation for H atom. Explain the significance of each term involved in it.
 - (b) What are the conditions imposed on ψ in order to solve Schrodinger's equation?
 - (c) i) Bond angle in PH₃ is less than that in PF₃.Explain.
 - ii) Write resonance structure of N₃-.

- (d) Explain why i) All P-Cl bonds in PCl₅ are not equivalent
 - ii) Why are electron affinity values of noble gases taken as zero?
- (e) (i) Why O²⁻ is larger in size than isoelectronic F⁻
 - ii) Write the Kapustinskii equation for evaluating lattice energy and explain its significance

(5x3.75)

- 5.(a) Select from each group of species having smallest size and justify your answer
 - (i) O, O $^{-}$ and O $^{2-}$
- (ii) K⁺, Sr²⁺and Al.
- (b) Write the mathematical expressions for normalized and orthogonal wave functions.
- (c) Are 5g and 6h sub-shells possible? Give reasons. If they are possible show how many orbitals can be present in each sub-shell?
- (d) What do you understand by spin multiplicity? Give justification for Hund's rule of maximum multiplicity taking a suitable example.
- (e) Calculate De Broglie wavelength of an electron travelling with $1/3^{rd}$ the speed of light (m=9.1x 10^{-31} kg, h=6.64x 10^{-34} Js c=3.0x 10^{8})

(5x3.75)

- 6.(a) State Heinsberg`s uncertainty principle. Is this limitation or uncertainty dependent on The inaccuracy of the measuring instrument? Explain. A body of 1 kg is moving with 100 ms⁻¹ velocity. The velocity may have 0.001% error ,calculate the uncertainty in position.
 - (b) Calculate the screening constant of 3d electron in As(33) by Slater's rules.
 - (c) Define with example Pauli`s exclusion principle. Account for +1/2 value assigned to Spin quantum number.
 - (d) Explain with help of Born-Haber cycle why CaF₂ Is stable whereas CaF is unstable.
 - (e) Draw molecular orbital diagram of CO molecule (using sp mixing). On the basis of this diagram explain how CO is an electron pair donor through carbon atom.

(5x3.75)