Name of Course	: CBCS B.Sc. (Math Sci)- II/ B.Sc. (Phy Sci)-II/
	B.Sc. (Life Sci)-II/ Applied Sciences-II
Unique Paper Code	: 42357501
Name of Paper	: DSE-Differential Equations
Semester	: V
Duration	: 3 hours
Maximum Marks	: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Define an exact differential equation. For the following equation find value of A such that the equation is exact and solve that equation

$$(x^2 + 3xy)dx + (Ax^2 + 4y)dy = 0.$$

Solve the differential equation $4y = x^2 + p^2$.

2. Given that $y = x^2$ and $y = x^5$ are solution of the corresponding homogeneous equation of the differential equation

$$x^2 \frac{d^2 y}{dx^2} - 6x \frac{dy}{dx} + 10y = 3x^4 + 6x^3.$$

Using this, find general solution of this non-homogeneous equation.

3. Solve the following system of equations

$$\frac{dx}{dt} + \frac{dy}{dt} - x - 3y = e^{t}$$
$$\frac{dx}{dt} + \frac{dy}{dt} + x = e^{3t}.$$

4. Solve the differential equation

$$x^{3}\frac{d^{3}y}{dx^{3}} - x^{2}\frac{d^{2}y}{dx^{2}} + 2x\frac{dy}{dx} - 2y = x^{3}.$$

Solve initial value problem

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 8y = 0, \quad y(0) = 1, \quad y'(0) = 6.$$

5. Find the integral of $q = (z + px)^2$ using Charpit's Method.

Eliminate the arbitrary function f from the equation

$$z = x + y + f(xy).$$

6. Reduce the equation

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$$

to canonical form.