Name of Course	: CBCS B.Sc. Hons Mathematics
Unique Paper Code	: 32351302
Name of Paper	: BMATH306-Group Theory-1
Semester	: III
Duration	: 3 hours
Maximum Marks	: 75 marks

Attempt any four questions. All questions carry equal marks.

1. Let A be a non-empty set and (G, .) be a group. Let F be the set of all functions from A to G. Define an operation * on F as follows:

For $f, g \in F$, let $f * g : A \to G$ as $(f * g)(x) = f(x), g(x) \forall x \in A$. Prove that $\langle F, * \rangle$ is a group.

Find the inverse of $\begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$ in $GL(2, \mathbb{Z}_5)$, the group of 2×2 non-singular matrices over \mathbb{Z}_5 . Verify the answer by direct calculation.

Describe the group of symmetries of a non-square rectangle and draw its Cayley's table.

2. Let a be an element of a group such that |a| = 3, prove that $C(a) = C(a^2)$. Give an example to show that the conclusion fails if |a| = 4.

Find the orders of each of the elements of U(14). Show that it is cyclic and find all its generators.

3. Define Centre Z(G) of a group G and prove that $Z(S_4) = \{e\}$.

For n > 2, show that every even permutation in S_n is a product of 3-cycles.

Let $\sigma = (1,5,7)(2,5,3)(1,6)$. Express σ^{17} as a cycle.

- 4. Prove or disprove any six, stating the results used (i) $\langle \mathbb{R}, + \rangle \approx \langle \mathbb{Q}, + \rangle$, (ii) $\langle \mathbb{Q}, + \rangle \approx \langle \mathbb{Z}, + \rangle$, (iii) $\langle \mathbb{R}, + \rangle \approx \langle \mathbb{R}+, . \rangle$, (iv) $D_4 \approx$ Group Q of Quaternions, (v) $U(20) \approx D_4$, (vi) $U(8) \approx U(12)$, (vii) $U(10) \approx \mathbb{Z}_4$, (viii) $\frac{GL(2,\mathbb{R})}{SL(2,\mathbb{R})} \approx \mathbb{R}^*$.
- 5. Let *H* be a subgroup of a group *G*. Prove that $aH \mapsto Ha^{-1}$ is a bijective mapping from the set of all left cosets of *H* in *G* to the set of all right cosets of *H* in *G*. Can the same be said for $aH \mapsto Ha$?

If G is a non-abelian group of order 8 with $Z(G) \neq \{e\}$, prove that |Z(G)| = 2.

6. Let N be a normal subgroup of G and M be a normal subgroup of N. If N is cyclic, prove that M is a normal subgroup of G. Show by an example that the conclusion fails to hold if N is not cyclic.

If φ is a homomorphism from a finite group G to a finite group G', prove that $|\varphi(G)|$ divides the gcd of |G| and |G'|.