
Name of the Course   : B.Sc. (Prog.) Mathematical Sciences 

Semester   : IV  

Unique Paper Code                 : 42354401 

Name of the Paper  : Real Analysis 

Duration: 2 Hours        Maximum Marks: 75 

Attempt any four questions. All questions carry equal marks. All symbols have usual meaning.  

 
1. Find the infimum and supremum, if they exist, of each of the following sets 
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2. Let 1 5 / 2x   and  𝑥௡ାଵ = 1 + ඥ𝑥௡ − 1, 𝑛 ∈ ℕ. Show that the sequence (𝑥௡)  is 

monotonic decreasing and bounded below. Find the limit of the sequence. 
 

3. For 1n  , define 𝑓௡, 𝑓: [0,1] → ℝ by ( ) n
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Prove that the sequence (𝑓௡) converges to 𝑓 in  0, 1 .  Also examine the uniform 

convergence of the sequence (𝑓௡) to  𝑓  in  0, 1 .  

  
4. Discuss the convergence of the series  
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Find the radius of convergence and exact interval of convergence of the power series 
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5. Define exponential function as the sum of a power series and determine its domain. Prove 

that       ,E x y E x E y   for all 𝑥, 𝑦 ∈ ℝ.   

If 𝑒 denotes E(1),  prove that   xE x e for all real 𝑥. 

 
6. State necessary and sufficient condition for a function to be Reimann integrable.  Show 

that a function f defined as   

                 12 , when 2 , 2 , 0,1, 2,3,
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            is integrable on [0, 1]. 
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