Name of the Course	: B.Sc. (Prog.) Mathematical Sciences	
Semester	: IV	
Unique Paper Code	: 42354401	
Name of the Paper	: Real Analysis	
Duration: 2 Hours		Maximum Marks: 75

Attempt any four questions. All questions carry equal marks. All symbols have usual meaning.

- 1. Find the infimum and supremum, if they exist, of each of the following sets (i) $A = \left\{1 - \frac{1}{2n} : n \in \mathbb{N}\right\}$ (ii) $B = \left\{\frac{1}{n} + \frac{1}{m} : m, n \in \mathbb{N}\right\}$ (iii) $C = \left\{\sum_{i=1}^{n} \frac{1}{3^{i-1}} : n \in \mathbb{N}\right\}$.
- 2. Let $x_1 = 5/2$ and $x_{n+1} = 1 + \sqrt{x_n 1}$, $n \in \mathbb{N}$. Show that the sequence (x_n) is monotonic decreasing and bounded below. Find the limit of the sequence.
- 3. For $n \ge 1$, define $f_n, f: [0,1] \to \mathbb{R}$ by $f_n(x) = x^n$ and $f(x) = \begin{cases} 0, \text{ if } 0 \le x < 1 \\ 1, \text{ if } x = 1 \end{cases}$.

Prove that the sequence (f_n) converges to f in [0, 1]. Also examine the uniform convergence of the sequence (f_n) to f in [0, 1].

4. Discuss the convergence of the series

$$\sum_{n=1}^{\infty} \left[\left(\frac{n+1}{n} \right)^{n+1} - \left(\frac{n+1}{n} \right) \right]^{-n}$$

Find the radius of convergence and exact interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(n+1)}{(n+2)(n+3)} x^n.$

5. Define exponential function as the sum of a power series and determine its domain. Prove that E(x+y) = E(x)E(y), for all $x, y \in \mathbb{R}$.

If *e* denotes E(1), prove that $E(x) = e^x$ for all real *x*.

6. State necessary and sufficient condition for a function to be Reimann integrable. Show that a function f defined as

$$f(x) = \begin{cases} 2^{-n}, \text{ when } x \in (2^{-n-1}, 2^{-n}], n = 0, 1, 2, 3, ... \\ 0, \text{ when } x = 0 \end{cases}$$

is integrable on [0, 1].