Name of the Course	: B.Sc. (Hons.) Mathematics CBCS
Semester	: VI
Unique Paper Code	: 32351602
Name of the Paper	: C14 - Ring Theory and Linear Algebra-II
Duration: 2 Hours	Maximum Marks: 75

Attempt any four questions. All questions carry equal marks. All symbols have usual meaning.

1. Suppose that $f(x) \in \mathbb{Z}_p[x]$ and is irreducible over \mathbb{Z}_p , where p is a prime. If deg f(x) = n, find the number of elements in the field $\mathbb{Z}_p[x]/\langle f(x) \rangle$.

Show that the polynomial $x^2 + 2x + 3$ is irreducible over \mathbb{Z}_5 and use this to construct a field of order 25.

2. Let D be a Euclidean domain and d the associated function. If a and b are associates in D, then what is the relation between d(a) and d(b)? Justify your answer.

Also prove that 2 + 3i and 2 - 3i are not associates in $\mathbb{Z}[i]$.

3. Let $V = \mathbb{R}^3$ and define $f_1, f_2, f_3 \in V^*$ as follows

 $f_1(x, y, z) = x + y, \quad f_2(x, y, z) = x - 2y + z, \quad f_3(x, y, z) = 3z.$

Prove that $\{f_1, f_2, f_3\}$ is a basis for V^* , and then find a basis for V for which it is the dual basis.

- 4. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Show that *A* is diagonalizable and find a 2 × 2 invertible martix *Q* such that $Q^{-1}AQ$ is a diagonal matrix. Also compute A^n where *n* is a positive integer.
- 5. Let $V = \mathbb{R}^3$, u = (1, 2, 2) and $W = \{(x, y, z) : x + y 3z = 0\}$. Find the orthogonal projection of the given vector u on the given subspace W of the inner product space V.
- **6.** Show that every self-adjoint operator on a finite-dimensional inner product space is normal. Is the converse true? Justify your answer.

Let V be an inner product space over \mathbb{R} and let T be a normal operator on V. Then show that T - 3I is normal, where I is the identity operator on V.