| Name of the Course | : B.Sc. (Hons.) Mathematics CBCS |
|--------------------|----------------------------------|
| Semester           | : <b>VI</b>                      |
| Unique Paper Code  | : 32351601                       |
| Name of the Paper  | : C13 - Complex Analysis         |
| Duration: 2 Hours  | Maximu                           |

Maximum Marks: 75

Attempt any four questions. All questions carry equal marks. All symbols have usual meaning.

1. Let  $S = \{z \in \mathbb{C} : |z| < 2\}$  and let *T* denotes the boundary of *S*. Find interior points, exterior points, boundary points and accumulation points of *T*. Does there exists a sequence  $(z_n)$  in *T* such that the series



converges? Justify your answer. Expand the function 1/(2 - z) into the Maclaurin series valid in the disk S. If  $f: S \to T$  is a function such that f is analytic everywhere in S, prove that f is constant throughout S. If  $g: \mathbb{C} \to T$  is an entire function, prove that g is constant throughout the complex plane.

2. Show that the function

$$f(z) = ze^{-z}$$

is entire by verifying that the real and imaginary parts of f satisfy the Cauchy-Riemann equations at each point of the complex plane. What is the anti-derivative of f? If C is any contour extending from z = 0 to  $z = i \pi$ , find the value of the integral

$$\int_C f(z)dz.$$

Also, use the ML-inequality to prove that

$$\left| \int_{C} \left| \frac{f(z)}{z^2 - 1} dz \right| \le \frac{2\pi\sqrt{e}}{3}$$

where *C* is the positively oriented circle |z| = 1/2.

3. Consider the function  $f: \mathbb{C} \to \mathbb{C}$  defined by  $f(z) = (Im z)^2$ . Use the Cauchy-Reimann equations to determine the points where f is differentiable. Is f analytic at those points? Compute the integral

$$\int_C f(z)dz$$

where C is the boundary of the square  $\{0 < x < 1 \& 0 < y < 1\}$  in the counter clockwise direction.

4. Let C be the positively oriented circle |z| = 1. Use the Cauchy Integral Formula to evaluate

$$\int_C \frac{\cos z}{z} dz.$$

Deduce that

$$\int_0^{2\pi} \cos(\cos t) \cosh(\sin t) \, dt = 2\pi.$$

Use the extension of Cauchy Integral Formula to find the value of the integral

$$\int_C \frac{\mathrm{e}^z \cos z}{z^4} dz$$

5. Find the pair of complex numbers  $z_1$  and  $z_2$  such that

$$Log (z_1 z_2) \neq Log z_1 + Log z_2$$

where Log z represents the principal value of  $\log z$ . Is Log(1+i)(1-i) = Log(1+i) + Log(1-i)? Justify your answer. Expand the functions  $z^3 - 6z^2 + 7z - 3$  into a Taylor series about the point  $z_0 = 1$ . Give two Laurent series expansions in powers of z for the function

$$f(z) = \frac{z}{(z-1)(z-2)}$$

and specify the regions in which those expansions are valid.

6. Determine whether  $z_0 = 0$  is a pole, a removable singularity or an essential singular point of the function

$$f(z) = \frac{1}{1 - \cos z}$$

and

$$q(z) = z^3 e^{1/z^2}$$

Also, determine the residue of f and g at  $z_0$ . Use the substitution  $z = e^{it}$  and the Cauchy Residue Theorem to evaluate the integral

$$\int_0^{2\pi} \frac{4\cos x}{5 - 4\cos x} dx.$$