Name of the Course	: B.Sc. (Hons.) Mathematics CBCS
Semester	: IV
Unique Paper Code	: 32351402
Name of the Paper	: C9 - Riemann Integration and Series of Functions
Duration: 2 Hours	Maximum Marks: 75

Attempt any four questions. All questions carry equal marks. All symbols have usual meaning.

1. Find the upper and lower Darboux integrals for $f(x) = x^2 + 2$ on the interval [0,1]. Is f integrable on [0,1]? Justify.

Let $g: [1,5] \rightarrow R$ be defined as

$$g(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 3, & \text{if } x \text{ is irrational.} \end{cases}$$

Find the upper and lower sums, U(g) and L(g) respectively, on [1,5]. Is g integrable on [1,5]?

Prove that $\left|\int_{-2\pi/3}^{2\pi/3} \left(\frac{3x}{4}\right)^2 \cos^3(x^5 + 3e^x) dx\right| \le \frac{\pi^3}{9}$ clearly stating the results used.

2. Show that the Sgn x, the Signum function, is integrable on [-a, a] for any a > 0. Using Fundamental theorem of Calculus I, show that

$$\frac{1}{2}\int_{2}^{3}x^{\frac{n}{2}}dx = \frac{3^{\frac{n+2}{2}}-2^{\frac{n+2}{2}}}{n+2}.$$

Calculate $\lim_{h\to 0} \frac{1}{h} \int_{1}^{1+h} e^{(3t^2+t)} dt$. State the theorem used.

3. Define improper integral of type II. When does it converge? When is it said to diverge? Examine the convergence of $\int_{2}^{+\infty} \frac{dx}{(x-1)^{2}}$ and $\int_{-\infty}^{0} e^{-x} dx$. Show that the improper integral $\int_{0}^{1} x^{a+1} (1-x)^{b} dx$ converges if and only if a > -2 and b > -1. 4. Define $f_n:[0,1] \to \mathbb{R}$ as

$$f_n(x) = \begin{cases} 2n - 2n^2 x & \text{if } 0 \le x \le 1/n \\ 0 & \text{if } 1/n < x \le 1. \end{cases}$$

Show that the pointwise limit does not exist on [0,1]. Further if we modify and define $f_n: [0,1] \to \mathbb{R}$ as

$$f_{n(x)} = \begin{cases} 0 & \text{if } x = 0\\ -n^2(2x - 2/n) & \text{if } 0 < x \le 1/n\\ 0 & \text{if } 1/n \le x \le 1 \end{cases}$$

then find the pointwise limit f of (f_n) on [0,1]. Show that f_n and f are integrable on [0,1] but $\lim_{n\to\infty} \int_0^1 f_n \neq \int_0^1 f$. Hence discuss the uniform convergence of (f_n) on [0,1]. Let $f_n(x) = \frac{nx}{1+n^2x^2}$. Compute the pointwise limt $f(x) = \lim_{n\to\infty} f_n(x)$. Show that the sequence (f_n) does not converge uniformly to f on [-1,1] but does converge uniformly on $[1,\infty)$.

5. State a sufficient condition for the uniform convergence of a series of functions. Using this prove that $\sum_{n=1}^{\infty} \frac{e^{-2x}}{3n^2+2n}$ is uniformly convergent on $[0, \infty)$. Also show that it is a continuous function on $[0, \infty)$.

Examine the pointwise convergence of the series $\sum f_n$, where $f_n(x) = \frac{x^n}{2x^{n+5}}$, $x \ge 0$.

Show that $\sum_{n=1}^{\infty} \sin\left(\frac{x^2}{n^3}\right)$ is uniformly convergent on (-1,1) but it is not uniformly convergent on \mathbb{R} .

6. Find the radius of convergence and determine the exact interval of convergence of the power series

$$\sum_{k=1}^{\infty} \frac{2^k}{k^2} x^k, \quad \sum_{k=0}^{\infty} 2^{-k} x^{4k}.$$

Given

$$\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k \quad \text{for } |x| < 1,$$

show that $\frac{1}{(1+x)^2} = \sum_{k=1}^{\infty} (-1)^{k+1} k x^{k-1}$ and hence $\frac{x}{(1+x)^2} = \sum_{k=1}^{\infty} (-1)^{k+1} k x^k$. Also evaluate $\sum_{k=1}^{\infty} (-1)^{k+1} k \left(\frac{3}{4}\right)^k$.