Name of the Course	: B.Sc. (Hons.) Mathematics CBCS
Semester	: IV
Unique Paper Code	: 32351403
Name of the Paper	: C10 - Ring Theory and Linear Algebra-I

Duration: 2 Hours

Maximum Marks: 75

Attempt any four questions. All questions carry equal marks. All symbols have usual meaning.

1. If $P_n(\mathbb{R})$ denotes the space of all polynomials of degree *n* or less with coefficients in \mathbb{R} and if $T: P_1(\mathbb{R}) \to P_2(\mathbb{R})$ is a linear transformation such that $T(x+1) = x^2 - 1$ and $T(x-1) = x^2 + x$, what is T(7x+2)? Show that $\{x + 1, x - 1\}$ is a basis of a $P_1(\mathbb{R})$.

Let a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined as T(a, b, c) = (a + c, a + b + 2c, 2a + b + 3c). Find a basis for the null space of *T* and a basis for the range space of *T*. Verify dimension theorem. Is *T* one-one? Is *T* onto?

- 2. Let a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined as T(x, y) = (x 2y, 2x + y, x + y). Let $\beta = \{(1, -1), (0, 1)\}$ and $\gamma = \{(1, 1, 0), (0, 1, 1), (1, -1, 1)\}$ be bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively. Find the matrix of T with respect to β and γ , that is $[T]_{\beta}^{\gamma}$. If β' and γ' denote the standard basis of \mathbb{R}^2 and \mathbb{R}^3 , respectively then find $[T]_{\beta'}^{\gamma'}$. What is the relation between the two matrices?
- 3. Can the polynomial $6x^3 3x^2 + x + 2$ be expressed as a linear combination of the polynomials $x^3 x^2 + 2x + 3$ and $2x^3 3x + 1$ in $P_3(\mathbb{R})$? Justify.

Determine if the set

$$\left\{ \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 2 & -2 \end{pmatrix} \right\}$$

in $M_{2\times 2}(\mathbb{R})$ is linearly independent or linearly dependent, where $M_{2\times 2}(\mathbb{R})$ is the set of all 2×2 matrices over \mathbb{R} . Justify.

Let $S = \{(1,1,0), (1,0,1), (0,1,1)\}$ be a subset of the vector space F^3 . Prove that if $F = \mathbb{R}$, then S is linearly independent and if F has characteristic 2, then S is linearly dependent.

4. Determine if the polynomials $x^2 + x + 1$, $2x^2 + 3x - 1$ and $-x^2 - x + 5$ generate $P_2(\mathbb{R})$. Justify.

What is the standard basis in $P_n(F)$? For a fixed $a \in \mathbb{R}$, determine the dimension of the subspaces of $P_n(\mathbb{R})$ defined by $\{f \in P_n(\mathbb{R}): f(a) = 0\}$.

- 5. Show that S = {a + ib : a, b ∈ Z, b is even} is a subring of Z[i] but not an ideal of Z[i]. Further, with complete explanation, find the number of elements in Z[i]/(3 + i). Find all maximal ideals in Z₈.
- 6. Show that the field $\mathbb{Z}_3[i]$ is ring isomorphic to the field $\frac{\mathbb{Z}_3[x]}{\langle x^2+1 \rangle}$. Determine all ring homomorphism from \mathbb{Z}_{20} to \mathbb{Z}_{30} .