Name of the Course	: B.Sc. (Hons.) Mathematics CBCS
Semester	: IV
Unique Paper Code	: 32351401
Name of the Paper	: C8 - Partial Differential Equations

Duration: 2 Hours

Maximum Marks: 75

Attempt any four questions. All questions carry equal marks. All symbols have usual meaning.

1. Find the general solution of the equation

 $[my (x + y) - nu^{2}]u_{x} - [lx(x + y) - nu^{2}]u_{y} = (lx - my)u$

2. Reduce the following equation into canonical form and obtain the solution

$$xu_x + yu_y + x^2u = x^2$$
 with $u(x, y) = \sin(x)$ on $y = x^2$.

3. Derive the one-dimensional heat equation

 $u_t = \kappa u_{xx}$, where κ is a constant.

4. Transform the equation

 $u_{xx} + 6u_{xy} + 9u_{yy} = 0$

into the canonical form and then find the general solution.

5. Solve the Goursat problem

$$xy^{3}u_{xx} - x^{3}yu_{yy} - y^{3}u_{x} + x^{3}u_{y} = 0,$$

$$u(x, y) = f(y) \text{ on } x = 0 \text{ for } 0 \le y \le 4,$$

$$u(x, y) = g(x) \text{ on } x^{2} + y^{2} = 16 \text{ for } 0 \le x \le 4,$$

where $f(4) = g(0).$

6. Find the solution of the following problem

$$u_t = ku_{xx} - 2h$$
, $0 < x < 1$, $t > 0$, where *h* is a constant,
 $u(x, 0) = u_0(1 - \cos(\pi x)), 0 \le x \le 1$, where u_0 is a constant
 $u(0, t) = 0, u(1, t) = 2u_0, t \ge 0$.