2/2/19 M

This q	uestion	paper	contains	4	printed	pages
--------	---------	-------	----------	---	---------	-------

Roll No.						5
11011				186		

S. No. of Question Paper: 7516

Unique Paper Code : 32231501

Name of the Paper : Molecular Biology

Name of the Course : B.Sc. (Hons.) Zoology

Semester : V

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

Question No. 1 is compulsory.

Illustrate your answers with appropriate diagrams.

1. (a) Define (any five):

5×1=5

- (i) Okazaki Fragments
- (ii) Polyribosome
- (iii) Alternative splicing
- (iv) Primer
- (v) Consensus Sequence
- (vi) Codon.

P.T.O.

(b)	Diffe	erentiate between (any five):	5×2=10
	(i)	B-DNA and Z-DNA	.s. No.
	(ii)	Leading and lagging strands	
	(iii)	DNA Polymerase I and DNA Polymerase I	u _{msv}
	(iv)	Monocistronic and polycistronic mRNA	emset i
	(v)	Prokaryotic and Eukaryotic ribosome	k Remuž
	(iv)	Topoisomerase I and Topoisomerase II.	
(c)	Expa	and the following (any four):	4×1=4
160 47 79 8	(i)	ARS	
	(ii)	snRNA	
	(iii)	URE	
	(iv)	CTD	
	(v)	HU Enzyme	
(d)	Give	the contribution of the following (any four)	: 1×4=4
	(i) ·	Erwin Chargaff	4
	(ii)	Maurice Wilkins	
	(iii)	Arthur Kornberg	
	(iv)	Craig C Mello	
	(v)	Carol D Greider	

	(e)	Draw neat and well labelled diagrams of the following:
autoj Ca		elorian mingre bar reformals ni 2×2=4
		(i) m-RNA structure of Globin protein.
		(ii) Trombone model showing arrangement of different
		proteins during replication.
2.	(a)	Describe Watson and Crick model of DNA.
	(b)	Describe the salient features of Genetic code.
3.	(a)	Discuss the mechanism of gene regulation in Tryptophar
		Operon. Paisons date at the ANO (A)
	(b)	With the help of suitable diagram describe the mechanism
		of transcriptional termination in prokaryotes.
4.	(a)	Discuss the process of activation of amino acids
		formation of initiation complex and elongation of the
		polypeptide chain in prokaryotes.
	(b)	Describe different methods of RNA interference.
5.	(a)	Explain the eukaryotic Transcription initiation Factor
		along with their functions.
	(b)	Describe the structure of Globin gene and its molecular
		mechanism of Splicing.

P.T.O.

Draw neat and well labelled diagrams of the following:

(b)	Diffe	erentiate between (any five):	5×2=10
	(i)	B-DNA and Z-DNA	. S No.
	(ii)	Leading and lagging strands	
	(iii)	DNA Polymerase I and DNA Polymerase	ui _{makir}
	(iv)	Monocistronic and polycistronic mRNA	Gundekî jî
	(v)	Prokaryotic and Eukaryotic ribosome	Janua 2
	(iv)	Topoisomerase I and Topoisomerase II.	
(c)		and the following (any four):	4×1=4
pod no stres	(i)	ARS	
	(ii)	snRNA	
	(iii)	URE	
((iv)	CTD	
	(v)	HU Enzyme	
(d)	Give	the contribution of the following (any four)	: 1×4=4
	(i) ·	Erwin Chargaff	
	(ii)	Maurice Wilkins	
	(iii)	Arthur Kornberg	
	(iv)	Craig C Mello	A PARTY
	(v)	Carol D Greider	

uriava lp	eler that mingre base resort alls in 2×2=4
	(i) m-RNA structure of Globin protein.
	(ii) Trombone model showing arrangement of different
	proteins during replication.
2. (a)	Describe Watson and Crick model of DNA. 6
(b)	Describe the salient features of Genetic code. 6
3. (a)	Discuss the mechanism of gene regulation in Tryptophan
	Operon. Proges defourable AVG (A) 8
(b)	With the help of suitable diagram describe the mechanism
	of transcriptional termination in prokaryotes. 4
4. (a)	Discuss the process of activation of amino acids,
	formation of initiation complex and elongation of the
	polypeptide chain in prokaryotes. 8
(b)	Describe different methods of RNA interference. 4
5. (a)	Explain the eukaryotic Transcription initiation Factors
	along with their functions.
(b)	Describe the structure of Globin gene and its molecular
	mechanism of Splicing.

- 6. (a) Describe the sequence of events during DNA replication in eukaryotes and explain the role of various enzymes.
 - (b) Enumerate the various differences between prokaryotic and eukaryotic translation.
- 7. Write short notes on any three of the following: 3×4
 - (i) t-RNA
 - (ii) Replication of telomeres
 - (iii) Genetic Imprinting
 - (iv) DNA mismatch repair.