[This question paper contains 5 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 7273

Unique Paper Code : 42351101 - OC

Name of the Paper : Calculus and Matrices

Name of the Course : B.Sc. (Mathematical

Sciences) / B.Sc. (Prog.)

Semester : I

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two questions from each section.

SECTION - I

1. (a) Verify that the set
$$S = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \right\}$$
 is a

basis of R4.

(6)

2

(b) Is
$$W = \left\{ \begin{bmatrix} x \\ y \\ 2x \end{bmatrix} : xy > 0 \right\}$$
 a subspace of \mathbb{R}^3 ? Justify

(6)

your answer.

2. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + y \\ y - z \\ x - z \end{bmatrix}$$

Show that T is a linear transformation. Also find a matrix representation for T. (6)

(b) Find the eigenvalues of the matrix

$$\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}. \tag{6}$$

3. (a) Determine the unique solution of the following system of equations

$$x + y + z = 6$$

 $2x + 3y + 4z = 20$
 $x + y = z$. (6)

7273 "

3

(b) Find the rank of the matrix

$$\begin{bmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{bmatrix}. \tag{6}$$

SECTION - II

4. (a) (i) Determine whether the sequence $\left\{1 + \frac{(-1)^n}{n}\right\}$ is bounded and monotonic.

(ii) Compute
$$\lim_{n\to\infty} \left\{ \frac{\cos n}{n} \right\}$$
. (6)

- (b) Find the nth derivative of $y = e^{3x} \sin(4x+1)$. (6)
- (c) If $y = (\sin^{-1}x)^2$, prove that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0.$$
 (6)

5. (a) Sketch the graph of $y = e^{-x} + 1$. (6)

Bu

- (b) According to Newton's Law of Cooling, the rate at which a substance cools in air is proportional to the difference between the temperature of the substance and that of the surrounding air. If the temperature of the air is 30°C and the substance cools from 100°C to 80°C in 20 minutes, find when the temperature will be 40°C. (6)
- (c) Find the Taylor series generated by $f(x) = \frac{1}{x}$ at x = 2.
- 6. (a) Draw the level curves for the surface $z = 9x^2 + 25y^2 \text{ at heights } k = 1, 2, 3.$ (6)
 - (b) Find all the second order partial derivatives of $f(x,y) = e^{x-3y}.$ (6)
 - (c) Verify that $z = e^x \sin(y) + e^y \cos(x)$ is a solution of the Laplace equation. (6)

SECTION - III

7. (a) Prove that the product of all the n^{th} roots of unity is $(-1)^{n-1}$. (4)

- (b) Represent graphically the set $\{z:|z| \le |z-1|\}$. (3½)
- 8. (a) Evaluate $\frac{(\cos \alpha + i \sin \alpha)^4}{(\sin \beta + i \cos \beta)^5}.$ (4)
 - (b) State fundamental theorem of algebra. Form an equation in lowest degree with rational coefficients having $\sqrt{3} + 2$ and $\sqrt{5} 2$ as two of its roots. (3½)
- 9. (a) Find the equation of the circle described on the join of the points given by -1 -3i and 5+7i as extremities of one of its diameters. (4)
 - (b) Find the equation of the straight line joining the points whose affixes are 2-5i and 1-i. (3½)