12/12/19 M

[This question paper contains 4 printed pages]

Your Roll No. :....

Sl. No. of Q. Paper : 7467 J

Unique Paper Code : 32351502

Name of the Course : B.Sc.(Hons.)

Mathematics

Name of the Paper : Group Theory - II

Semester : V

Time: 3 Hours Maximum Marks: 75

Instructions for Candidates:

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) Attempt any two parts from each question.
- . (c) All questions carry equal marks.
- 1. (a) Let Inn (D₈) denotes the group of inner automorphisms on the dihedral group D₈ of order 8. Find Inn (D₈).
 - (b) Define inner automorphism of a group G induced by g∈G. Then prove that the set Inn(G) of all inner automorphism of a group G is a normal subgroup of the group Aut(G) of all automorphisms of G.
 2+4

- (c) Let G be a cyclic group of order n. Then prove that Aut(G) is isomorphic to U(n). Here Aut(G) denotes the group of automorphisms on G and U(n) = {m∈N : m < n and gcd (m, n) = 1} is a group under multiplication modulo n.
- 2. (a) Prove that every characteristic subgroup of a group G is a normal subgroup of G. Is the converse true? Justify.
 - (b) Let G_1 and G_2 be finite groups. If $(g_1,g_2) \in G_1$ $\bigoplus G_2$, then prove that $|(g_1,g_2)| = lcm(|g_1|,|g_2)|)$ where |g| denotes order of an element g in a group G.
 - (c) Prove that D₈ and S₃ cannot be expressed as an internal direct product of two of its proper subgroups. Here D₈ and S₃ denote the dihedral group of order 8 and the symmetric group on the set {1, 2, 3} respectively. 3+3
- 3. (a) State Fundamental Theorem for Finite Abelian Groups. Find all Abelian groups (upto isomorphism) of order 1176.
 - (b) Let G be an Abelian group of order 120 and G has exactly three elements of order 2. Determine the isomorphism class of G.

- (c) For a group G, let the mapping from G × G → G be defined by (g, a) → gag⁻¹. Then prove that this mapping is a group action of G on itself. Also, find kernel of this action and the stabilizer G_x of an element x∈G.
- 4. (a) Let $G=\{1,a,b,c\}$ be the Klein 4-group. Label the group elements 1,a,b,c as integers 1,2,3,4 respectively. Compute the permutation σ_a , σ_b and σ_c induced by the group element a, b, c respectively under the group action of G on itself by left multiplication.
 - (b) Let G act on a set A. If $a,b \in A$ and b=g.a for some $g \in G$, then prove that $G_b = gG_ag^{-1}$ where G_a is the stabilizer of a. Deduce that if G acts transitively on A then kernel of the action is $\bigcap_{g \in G} g G_a g^{-1}$.
 - (c) Let G be a group acting on a non empty set A and a∈A. Then prove that the number of elements in orbit containing a is equal to index of the stabilizer of a.

- 5. (a) State the class equation for finite groups. Find conjugacy classes of the quaternion group Q_8 and hence verify the class equation for Q_9 . 2+3+1.5
 - (b) Let p be a prime and P be a group of prime power order p^{α} for some $\alpha \ge 1$. Then prove that P has a non trivial centre. Deduce that a group of order p^2 is an Abelian group.

4+2.5

- (c) Let G be a non-Abelian group of order 231.

 Then prove that a Sylow 11-subgroup is normal and is contained in the centre of G.

 2.5+4
- 6. (a) Let G be a group of order pq such that p < q and p does not divide (q-1). Then prove that G is a cyclic group. Hence deduce that a group of order 33 is cyclic.

 4.5+2
- (b) Define a simple group. Prove that groups of order 72 and 56 are not simple.

1 + 2.5 + 3

(c) Let G be a group such that |G|=2n, where n≥3 is an odd integer. Then prove that G is not simple.
6.5