This question paper contains 4 printed pages]

11/12/19 =

J

	10173	THE REAL PROPERTY.	The Later	STEE	College of the last	State State	1 1000	-	100 miles	1150110
Roll No.			9h							

S. No. of Question Paper: 8529

Unique Paper Code : 32225101

Name of the Paper : Electricity and Magnetism

Name of the Course : Physics : GE. for Honours

Semester : I

Duration: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions.

Q. No. 1 is compulsory.

All questions carry equal marks.

1. Attempt any five of the following:

5×3=15

- (a) Determine the constant a, so that the vector $\overrightarrow{A} = (x+3y)\hat{i} + (2y+3z)\hat{j} + (x+az)\hat{k}$ is solenoidal.
- (b) Explain the physical significance of divergence and curl of a vector function.
- (c) Can the following be a possible electrostatic field?

$$\overrightarrow{E} = xy\hat{i} + 2yz\hat{j} + 3xz\hat{k}$$

- (d) Three point charges +q, +2q and -4q are located at the three corners of an equilateral triangle of side a.

 Calculate the electric potential energy of this discrete charge configuration where $q = 1.0 \times 10^{-7}$ C and a = 10 cm.
- (e) Distinguish between dia-, para- and ferro-magnetic materials.
- (f) Discuss the difference between induced electric field and electric field due to static charges.
- (g) A current of 30 A flows in a flat circular coil having 100 closely wound turns of radius 10 cm. What is the magnetic flux density at the centre of the coil?
- 2. (a) Show that $V(x, y, z) = 2xyzi + (x^2z + 2y)j + x^2yk$ is irrotational and find a scalar function U(x, y, z) such that $V = \nabla U$.
 - (b) Find a unit vector normal to the surface $x^2y + 2xz = 4$ at the point (2, 1, -3).
- 3. (a) Find the electric potential due to an electric dipole at a point P having distance \vec{r} and angle θ from the centre of the dipole.

- (b) If the earth has a surface charge density equal to the charge of an electron, calculate the potential on the surface of the earth. Also find the electric field just outside the earth. $(e = 1.6 \times 10^{-19})$ C, radius of earth = 6×10^6 m).
- (a) Using Gauss's law find the electric field inside and outside a solid sphere carrying a uniform volume charge density of ρ.
 - (b) Evaluate the electrostatic energy of a uniformly charged sphere and show that it is 6/5 times the energy of a conducting sphere having the same amount of charge and the same radius.

 7, 8
- 5. (a) Using Biot-Savart's law, find the magnetic field at the centre of a current (I) carrying circular coil of radius a.
 - (b) Using Ampere's circuital law, find the magnetic field due to a current (I) carrying long cylindrical wire of radius R at a point distant r from the axis of the cylindrical wire for r > R and r < R. 8, 7

- 6. (a) State and prove reciprocity theorem for mutual inductance (i.e. $M_{12} = M_{21}$).
 - (b) Calculate the mutual inductance of solenoid of 1 m length having 1000 turns in primary and 200 turns in secondary. The area of cross-section of solenoid is 5 cm².
- 7. (a) Define magnetic vector potential \vec{A} and derive the expression : $\vec{A} = \frac{\mu_0}{4\pi} \int \frac{\vec{J}}{r} d\tau$.
 - (b) Explain how and under what conditions the Ampere's circuital law was modified by Maxwell. 8,7

8529

4

1,200