This question paper contains 4 printed pages.

Your Roll No.

Sl. No. of Ques. Paper: 8227 J

Unique Paper Code : 32355101

Name of Paper : Calculus

Name of Course : Mathematics : G.E. (OC)

Semester : I

Duration : 3 hours

Maximum Marks : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All questions carry equal marks, 5 each.

Attempt any five questions from each Section.

SECTION I

- 1. Use $\in -\delta$ definition to show that $\lim_{x\to 0} x \sin \frac{1}{x} = 0$.
- 2. Find the horizontal and vertical asymptotes of the curve $f(x) = \frac{x-1}{x^2+2}.$
- 3. Find the linearization of $f(x) = \cos x$ at $x = -\frac{\pi}{2}$.
- 4. For $f(x) = 4x^3 x^4$:
 - (i) Find the intervals on which f is increasing and the intervals on which f is decreasing.

- (ii) Find where the graph of f is concave up and where is concave down.
- 5. Use L'Hôpital's rule to find $\lim_{t\to 0} \frac{10(\sin t t)}{t^3}$.
- 6. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.
- 7. The radius r of a circle increases from a = 10 m to 10.1 m. Use dA to estimate the increase in the circle's area A. Estimate the area of the enlarged circle and compare your estimate to the true area.

SECTION II

- 8. The region bounded by the parabola $y = x^2$ and the line y = 2x in the first quadrant is revolved about the y-axis to generate a solid. Use washer method to find the volume of the solid.
- 9. Find the length of the curve $y = \left(\frac{x}{2}\right)^{2/3}$ from x = 0 to x = 2.
- 10. Is the area under the curve $y = \frac{(\ln x)}{x^2}$ from x = 1 to $x = \infty$ finite? If so, what is it?
- 11. Use direct comparison test to determine whether $\int_{1}^{\infty} \frac{dx}{\sqrt{x} + e^{3x}}$ converges.

- 12. Sketch the graph of the curve $r = \cos 2\theta$ in polar coordinates.
- 13. If r(t) is a differentiable vector-valued function of t of constant length, then show that r(t) is orthogonal to $\frac{dr(t)}{dt}$ for all t. Verify this result for the function $r(t) = 3 \sin 5t \mathbf{i} + 9 \mathbf{j} 3 \cos 5t \mathbf{k}$.
- 14. Find the arc length parametrization for the helix $r(t) = 4 \cos t i$ + $4 \sin t j + 3 t k$, $0 \le t \le \frac{\pi}{2}$.

SECTION III

- 15. If $r(t) = \left(\frac{t^3}{3}\right)\mathbf{i} + \left(\frac{t^2}{2}\right)\mathbf{j}$, t > 0, find binomial vector and torsion.
- 16. Find the limit of f as $(x, y) \rightarrow (0, 0)$ and show that limit does not exist for the function $f(x, y) = \frac{x y}{x + y}$.
- 17. If $f(x, y) = \cos^2(3x y^2)$, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

8227

- 18. Express $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ as functions of u and v if $z = 4e^x \ln y$, $x = \ln (u \cos v)$, $y = u \sin v$.
- 19. Find the directional derivative of the function f at P_0 in the direction of v where $f(x, y, z) = \cos xy + e^{yz} + \ln zx$, $P_0\left(1, 0, \frac{1}{2}\right)$ and $v = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.

8227

20. Find parametric equations for the line tangent to the curve of intersection of the surfaces at the given point:

Surfaces:
$$x^2 + y^2 = 4$$
, $x^2 + y^2 - z = 0$, Point: $(\sqrt{2}, \sqrt{2}, 4)$.

21. A delivery company accepts only rectangular boxes the sum of whose length and girth (perimeter of cross-section) does not exceed 108 inches. Find the dimensions of the acceptable box of largest volume.