This question paper contains 6 printed pages.

Your	Roll	No.	***************************************

Sl. No. of Ques. Paper: 8292

J

Unique Paper Code

: 32175901

Name of Paper

: Atomic Structure, Bonding, General Organic Chemistry and Aliphatic

Hydrocarbons

Name of Course

: Generic Elective : Chemistry

Semester

: III

Duration

: 3 hours

Maximum Marks

: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Use of Calculator is permitted.

Answer three questions each from Section A and Section B.

Please indicate the section you are attempting by putting
a heading and do not intermix the Sections.

The question should be numbered in accordance
to the number in the question paper.

Section – A
(Inorganic Chemistry)

Attempt any three questions.

Question No. 1 is compulsory.

 (a) (i) Compare the valence bond and molecular orbital approaches to bonding.

- (ii) Explain the geometry and hybridization in case of PF₅ molecule. Also give reason why all P-F bonds in PF₅ are not equivalent.
- (b) Explain Fajan's rules. Using these rules, explain the relative ionic/covalent nature of the following pairs of molecules:
 - (i) LiI and CsI
 - (ii) CuCl and NaCl
 - (iii) FeCl₂ and FeCl₃.
- (c) Draw the molecular orbital energy level diagram for nitric oxide molecule. Calculate its bond order. The NO molecule can readily lose an electron to form NO+ ion. Explain this observation.

 4/2,4/2,4/2
- (a) Why is it necessary to transform the Schrödinger's equation from the cartesian coordinates to polar coordinates? Explain the transformations of the coordinates involved.
 - (b) Calculate the percentage ionic character of the A-B bond given that the bond length is 127 pm and that the observed dipole moment is 1.03D. (Elementary charge, $e = 1.6 \times 10^{-19}$ C.)
 - (c) Justify which of the following orbitals are not feasible:

 5f, 3g, 2d, 1p

 4,4,4
- (a) Write the time independent Schrödinger's equation for the hydrogen atom explaining briefly the terms involved.
 - (b) Predict the type of hybridization of the central atom and shape of the following on the basis of valence bond theory:—

- (i) CO₃
- (ii) XeF4
- (iii) ClF₃
- (iv) IF7.
- (c) Write a short note on radial probability curves. Draw the radial probability distribution curves for the 3s, 3p and 3d atomic orbitals.

 4,4,4
- 4. (a) Write short notes on:
 - (i) Pauli's exclusion principle
 - (ii) Hund's rule of maximum multiplicity.
 - (b) Write the Born Lande's equation for the calculation of lattice energy. Explain the various terms involved in it.
 - (c) What are quantum numbers? Draw the shapes of 3d orbitals indicating the sign of wave function.

 4,4,4

Section – B
(Organic Chemistry)

Attempt any three questions.

Question No. 5 is compulsory.

- 5. Account for the following statement:
 - (a) Dipole moment of cis-1,2-dibromoethane is higher them trans-1,2-dibromoethane.
 - (b) Arrange the following in increasing order of acidic strength:
 - (i) o-Nitrophenol; p-Nitrophenol; m-Nitrophenol
 - (ii) Ethane; Ethyne; Ethene

- (c) The Kharasch peroxide effect is observed only in HBr and not in HF, HCl and HI.
- (d) Define Aromaticity. Cyclopentadienyl anion is aromatic while cyclopentadiene is not.
- (e) Cycloalkanes exhibit Geometrical Isomerism.
- (f) Allyl carbocation is more stable than vinyl carbocation.

2,3,2,3,2,11/2

6. (a) Complete the following reactions:

(i)
$$(1)O_3 \rightarrow A + B + C$$

(ii)
$$\longrightarrow$$
 $\xrightarrow{\text{HBr}}$ D $\xrightarrow{\text{Mg, Dry Ether}}$ E

(iii)
$$H_3C - C \equiv C - CH_3 \xrightarrow{H_2} Lindlar's Catalyst \rightarrow F$$

- (b) A hydrocarbon C₆H₁₂ decolorizes Br₂ solution, when dissolved in conc H₂SO₄ yields 2,2-dimethylbutane on hydrogenation and on ozonolysis gives formaldehyde and 2,2-dimethylpropanal. What is the structure of hydrocarbon? Give all the reactions involved. Also give the product obtained after the hydroboration oxidation of C₆H₁₂.
- (c) How will you distinguish between 1-Butyne and 2-Butyne.

6,5,1

- 7. (a) Carry out the following conversions (any two):
 - (i) 2-Bromopropane to 1-Bromopropane
 - (ii) Propyne to Pent-2-yne
 - (iii) Propyne to Trans-but-2-ene.

- (b) Define Markownikov's Rule. Explain with suitable example.
- (c) Draw the Fischer projection of Erythro-3-bromobutan-2ol and convert it into Newmann projection.
- (d) Assign the absolute configuration:

3,2,3,4

- 3. Write short notes on (any three):
 - (a) Structure and stability of carbocation

P.T.O.

8292

- (b) Conformations of *n*-Butane
- (c) Oxymercuration and Demercuration
- (d) Enantiomers and Diastereomers.

3×4

8292 600