[This question paper contains 15 printed pages]

Your Roll No. :....

Sl. No. of Q. Paper : 9115 IC

Unique Paper Code : 12271202

Name of the Course : B.A. (Hons.)

Economics - CBCS

Name of the Paper : Mathematical Methods for

Methods for Economics - II

Semester : II

Time: 3 Hours Maximum Marks: 75

Instructions for Candidates:

परीक्षार्थियों के लिए निर्देश :

(a) Write your Roll No. on the top immediately on receipt of this question paper.

इस प्रश्न-पत्र के प्राप्त होने पर तुरंत शीर्ष पर अपना रोल नंबर लिखें।

(b) Answer may be written either in **English** or in **Hindi**; but the same medium should be used throughout the paper.

इस प्रश्न-पत्र का उत्तर अंग्रेजी या हिंदी किसी एक भाषा में दीजिए, लेकिन सभी उत्तर एक ही भाषा में होने चाहिए।

- (c) Answer **all** questions. Choice is available within each questions.

 सभी पाँच प्रश्नों के उत्तर दीजिए। सभी प्रश्नों के भीतर चयन उपलब्ध है।
- (d) Use of simple calculator is permitted. साधारण कैल्कुलेटर प्रयोग करने की अनुमति है।
- 1. Attempt any **four** from the parts (a) to (e) in this question. 6×4 इस प्रश्न में भाग (a) से (e) में से किन्हीं चार के उत्तर दीजिए।
 - (a) (i) Prove that any set of k vectors in Rⁿ is linearly dependent if k > n.
 सिद्ध कीजिए कि में k सिदशों का कोई भी समुच्चय रैखिकत : निर्भर (linearly dependent) होता है यदि k > n.
 - (ii) Under what conditions is the lower triangular matrix of order n × n invertible? Prove, for a lower triangular matrix of order 3×3, that if the inverse exists, the inverse is also a lower triangular matrix. किन शर्तों के अधीन n × n क्रम का एक निम्न त्रिकोणात्मक आव्यूह (lower triangular matrix) प्रतिलोमनीय (invertible) होता है ? सिद्ध कीजिए कि एक आर्डर 3×3 निम्न त्रिकोणात्मक मैट्रिक्स के लिए यदि प्रतिलोम (inverse) का अस्तित्व है, तो वह भी निम्न त्रिकोणात्मक होगा।

(b) (i) For what values of p does the system of equations:

px + y + 4z = 2; $2x + y + p^2z = 2$; x - 3z = p have a unique, none or infinitely many solutions.

p के किन मानों हेतु समीकरण निकाय : $px + y + 4z = 2; 2x + y + p^2z = 2; x - 3z = p$ का अद्वितीय हल होगा, कोई हल नहीं होगा या अनन्त हल होंगे।

(ii) Replace the vector of constants (2, 2, p) in part (i) above by (b₁, b₂, b₃) to state a necessary and sufficient condition for the new system of equations to have infinitely many solutions.

उपरोक्त भाग (i) में स्थिरांकों के सिदश (2, 2, p) के स्थान पर (b_1, b_2, b_3) लीजिए व इस नए समीकरण निकाय के अनन्त हल होने हेतु आवश्यक व पर्याप्त शर्तों को लिखिए।

(c) The 5000 consumers of a product are equally divided between brand A and brand B this year. However each year 10% of brand A consumers of the previous year shift to brand B whereas 20% of brand B consumers of the previous year shift to brand A. The total number of consumers remain fixed. Set out the problem in matrix form to answer the following:

इस वर्ष एक उत्पाद के 5000 उपभोक्ता ब्रांड A व ब्रांड B में विभाजित हैं। प्रतिवर्ष ब्रांड A के पिछले वर्ष के उपभोक्ताओं में से 10% ब्रांड B पर चले जाते हैं जबिक ब्रांड B के पिछले वर्ष के उपभोक्ताओं में से 20% ब्रांड A पर चले जाते हैं। उपभोक्ताओं की कुल संख्या स्थिर रहती हैं। इस समस्या को आव्यूहों के रूप में लिखिए व इसकी सहायता से निम्नलिखित प्रश्नों के उत्तर दीजिए।

- (i) What is the proportion of brand A consumers after 2 years?2 वर्षों बाद ब्रांड A के उपभोक्ताओं का अनुपात क्या होगा ?
- (ii) What was the proportion of brand A consumers last year ?
 पिछले वर्ष ब्रांड A के उपभोक्ताओं का अनुपात क्या था ?

(d) (i) The plane P is perpendicular to the straight line $\frac{x-2}{3} = \frac{y+4}{5} = \frac{z-3}{2}$ and passes through (1, 5, 7). Find the equation of the plane P.

समतल (plane) P, रेखा $\frac{x-2}{3} = \frac{y+4}{5} = \frac{z-3}{2}$ के लम्बवत् (perpendicular) है तथा (1, 5, 7) से गुजरती है। समतल P का समीकरण ज्ञात कीजिए।

- (ii) If \vec{x} and \vec{y} are vectors of unit length, under what circumstances is the length of their difference equal to 2? $\vec{x} = \vec{y} = \vec{x} + \vec{x} = \vec{y} = \vec{x} + \vec{x} = \vec{x} =$
- (e) (i) How many different matrices of order 3 × 3 can be formed that are both diagonal and idempotent?

 क्रम 3 × 3 के ऐसे कितने अलग-अलग आव्यूह बनाए जा सकते हैं जो कि विकर्णात्मक (diagonal) भी हों व आइडेम्पोटट (idempotent) भी ?

P.T.O.

(ii) Describe the set of vectors spanned by the set of vectors A, B and C, where : सदिशों A, B व C, द्वारा पाटे गए (spanned) सदिशों के समुच्चय का वर्णन कीजिए जहाँ :

$$A = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 9 \\ 8 \end{pmatrix} \right\}; B = \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 8 \\ 12 \end{pmatrix}, \begin{pmatrix} 7 \\ 17 \\ 21 \end{pmatrix} \right\};$$

$$C = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

2. Attempt any two from the parts (a) to (c) in this question. 5×2

इस प्रश्न में भाग (a) से (c) में से किन्हीं दो के उत्तर दीजिए।

(a) (i) Specify the domain and provide a rough sketch of it for the function $f(x, y) = \ln(9-x^2-9y^2)$. Also provide a rough sketch of the level curve at the height 4.

फलन $f(x,y) = In(9-x^2-9y^2)$ का परास लिखिए व उसका एक रेखाचित्र बनाइए। ऊँचाई 4 पर इसके स्तर वक्र को भी आरेखित कीजिए।

(ii) State three different necessary and sufficient conditions for concavity of a function f(x, y) that is continuously differentiable of order 2 and is defined on a convex domain.

एक उत्तल परास (convex domain) पर परिभाषित व क्रम 2 के सततः अवकलनीय (continuously differentiable) फलन f(x, y) की अवतलता (concavity) हेत तीन अलग-अलग आवश्यक व

(b) (i) For the surface defined by the differentiable function $z = F\left(x, \frac{y}{x}\right)$, show that the tangent plane at (x_1, y_1) intersects the z axis at

$$z = F\left(x_1, \frac{y_1}{x_1}\right) - F'_x\left(x_1, \frac{y_1}{x_1}\right) x_1$$

पर्याप्त शर्तें लिखिए।

अवकलनीय फलन $z = F\left(x, \frac{y}{x}\right)$, द्वारा परिभाषित सतह (surfae) हेतु दर्शाइए कि पर स्पर्शी समतल (tangent plane) z अक्षा को $z = F\left(x_1, \frac{y_1}{x_1}\right) - F'_x\left(x_1, \frac{y_1}{x_1}\right) x_1$ पर प्रतिच्छेदित (intersect) करता है।

6

- (ii) Draw a sketch of the level curve(s)to the function $f(x,y) = \frac{2y}{x} + \left(\frac{y}{x}\right)^2$ at the height 3 cm or m. Is the function homothetic?
 - फलन $f(x,y) = \frac{2y}{x} + \left(\frac{y}{x}\right)^2$ के ऊँचाई 3 cm or m पर स्तर वक्र (वक्रों) को आरेखित कीजिए। क्या यह फलन होमोथेटिक (homothetic) है ?
- (c) The temperature at a point (x, y) on a metal plate in the X-Y plane is $T(x,y) = \frac{xy}{1+x^2+y^2}$. X-Y समतल में धातु की एक प्लेट के बिन्दु (x, y) पर तापमान $T(x,y) = \frac{xy}{1+x^2+y^2}$ है।
 - (i) Find the rate of change of temperature at (1,1) in the direction (2,-1).
 (1,1) पर दिशा (2,-1) में तापमान के परिवर्तन की दर ज्ञात कोजिए।

- (ii) An ant at (1,1) wishes to walk in the direction in which the temperature drops most rapidly. Write down the unit vector in that direction.
 - (1,1) पर स्थित एक चींटी उस दिशा में चलना चाहती है जिसमें तापमान सबसे तेजी से गिरता है। इस दिशा में इकाई सदिश लिखिए।
- 3. Attempt any two from the parts (a) to (c) in this question. 6×2

इस प्रश्न में भाग (a) से (c) में से किन्हीं दो के उत्तर दीजिए।

(a) Given that the function f (x, y) is homogenous

of degree p, show that $\frac{\partial f(x,y)}{\partial x}$ and $\frac{\partial f(x,y)}{\partial y}$

are homogenous of degree p-1. Using this, or otherwise, prove that $x^2f''_{xx} + 2xyf''_{xy} + y^2f''_{xy} = p(p-1)f(x,y)$

दिया हुआ है कि फलन f (x, y) कोटि p का समघात है, तो

दर्शाइए कि $\frac{\partial f\left(x,y\right)}{\partial x}$ व $\frac{\partial f\left(x,y\right)}{\partial y}$ कोटि p-1 के समघात

हैं। इसकी सहायता से, या अन्यथा सिद्ध कीजिए कि

$$x^{2}f_{xx}^{*} + 2xyf_{xy}^{*} + y^{2}f_{yy}^{*} = p(p-1)f(x,y)$$

- (b) (i) State the implicit function theorem.

 परोक्ष फलन प्रमेय (implicit function theorem)
 को लिखिए।
 - (ii) The function $f(x, y, z, u, v): \Re^5 \rightarrow \Re^2$ is defined by the system of two equations: $u^3yz + 2xv u^2v^2 2 = 0$; and $xy^2 + xzu + yv^2 3 = 0$, has a solution at (x, y, z, u, v) = (1, 1, 1, 1, 1). Find the values of the endogenous variables u and v when x = 1.02, y = 0.99, and z = 1.

फलन f(x, y, z, u, v) : $\mathfrak{R}^5 \to \mathfrak{R}^2$ जो कि दो समीकरणों के निकाय: $u^3yz + 2xv - u^2v^2 - 2 = 0$; $a xy^2 + xzu + yv^2 - 3 = 0$, से परिभाषित है, का (x, y, z, u, v) = (1, 1, 1, 1, 1) पर एक हल है। जब x = 1.02, y = 0.99 , a z = 1 हों तो अन्तर्जात चरों (endogenous variables) a = v के मान ज्ञात कीजिए।

- (c) State the definition for a quasi-concave function. Use the definition to test whether the following three functions are quasi-concave:
 - (i) $f(x) = x^2$ (ii) $g(x) = \sqrt{x}$ (iii) $h(x, y) = x^2 y$ एक अर्थ अवतल (quasi-concave) फलन की परिभाषा लिखें। इस परिभाषा के इस्तेमाल से निम्नलिखित तीन फलनों के अर्थ अवतल होने का परीक्षण करें।

(i)f (x) =
$$x^2$$
 (ii)g(x) \sqrt{x} (iii) h (x, y) = x^2 y

- 4. Attempt any **three** from the parts (a) to (d) in this question. 7×3 इस प्रश्न में भाग (a) से (d) में से किन्हीं तीन के उत्तर दीजिए।
 - (a) Derive the conditions on α , β under which the function $f(x,y)=2x^{\alpha}y^{\beta}$, α , $\beta>0$ defined on the domain $x\geq 0$, $y\geq 0$ is: $\alpha,\beta \quad \forall \tau \ \exists \tau \$
 - (i) Strictly Concave

सख्ततः अवतल (Strictly Concave) है

(ii) Concave

अवतल (Concave) है

- (iii) Quasi-concave अर्छ-अवतल (Quasi-Concave) है
- (iv) Convex उत्तल (Convex) है।
- (b) State the sufficient conditions for a function to possess both a global maxima and a global minima in its domain.

Find the global extreme points for the function $f(x, y) = x^2y^3$ defined on the set $\{(x,y) | x \ge 1, y \ge 2, x + y \le 10\}$.

एक फलन के परास में वैश्विक उच्चिष्ठ (global maxima) व वैश्विक निम्निष्ठ (global minima) दोनों होने हेतु आवश्यक शर्तों को लिखिए।

समुच्चय $\{(x,y) \mid x \ge 1, y \ge 2, x+y \le 10\}$ पर परिभाषित फलन f(x,y) x^2y^3 के वैश्विक चरम बिन्दु (extreme points) ज्ञात कीजिए।

(c) Find all stationary points of the function $f(x, y) = x^3 + y^2 - 2xy - 2x^2 + x - y + 4$ classify the stationary points as maxima, minima and saddle points.

फलन $f(x, y) = x^3 + y^2 - 2xy - 2x^2 + x - y + 4$ के सभी स्थिर बिन्दु (stationary points) ज्ञात कीजिए। इन बिन्दुओं को उच्चिष्ठ (maxima), निम्निष्ठ (minima) या काठी बिन्दु (saddle points) के तौर पर वर्गीकृत कीजिए।

(d) A point moves on the curve $x^2 + y^2 = 100$. At what point is its distance from the point (x, y) = (10, 8) minimum? If the constant 100 in the equation of the curve were to be increased by one unit, what is the instantaneous effect on the minimum distance.

एक बिन्दु वक्र $x^2 + y^2 = 100$ पर गति करता है। किस बिन्दु पर बिन्दु (x, y) = (10, 8) से इसकी दूरी न्यूनतम होगी ? यदि वक्र के समीकरण के स्थिर मान 100 को एक इकाई से बढ़ा दिया जाए तो इस न्यूनतम दूरी पर तात्क्षणिक (instantaneous) प्रभाव क्या होगा ?

13

- 5. Attempt any two from the parts (a) to (c) in this question. 4×2
 इस प्रश्न में भाग (a) से (c) में से किन्हीं दो के उत्तर दीजिए।
 - (a) Consider the differential equation $\frac{dy}{dt} = k \left(1 \frac{y}{m}\right) y \text{ where } k \text{ and } m \text{ are positive}$ constants. Draw a phase line to determine if the equation possesses a stable equilibrium.

अवकल समीकरण (differential equation) $\frac{dy}{dt} = k \left(1 - \frac{y}{m}\right) y \text{ पर विचार कीजिए जहाँ } k \text{ a } m$ धनात्मक स्थिरांक हैं। क्या इस समीकरण की स्थायी साम्यावस्था का अस्तित्व है, इसका निर्धारण करने हेतु एक प्रावस्था रेखा (phase line) को आरेखित कीजिए।

(b) Two sets A and B in \Re^2 are defined as $A = \{(x, y) \mid xy \ge 10\}$ and $B = \{(x, y) \mid 2x^2 + y \le 0\}$. Draw a sketch of the sets to decide:

14

 \mathfrak{R}^2 में दो समुच्चय $A = \{(x, y) \mid xy \ge 10\}$ व $B = \{(x, y) \mid 2x^2 + y \le 0\}$ द्वारा परिभाषित हैं। इन समुच्चयों के आरेख बनाइए व उन आरेखों की सहायता से निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) whether the sets A and B are closed and bounded.

 क्या समुच्चय A व B बन्द (closed) व परिबद्ध (bounded) हैं।
- (ii) whether the set A ∩ B is convex. क्या समुच्चय A ∩ B उत्तल (convex) है।

15