This question paper contains 4+2 printed pages]

Roll No.							Sun S	
AND THE RESERVE			-	-	1			,

S. No. of Question Paper: 2253

16/5/19

Unique Paper Code

32351601

IC

Name of the Paper

: Complex Analysis

Name of the Course

B.Sc. (Hons.) Mathematics

Semester

VI

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all parts from Question No. 1.

Each part carries 11/2 marks.

Attempt any two parts from question Nos. 2 to 6

Each part carries six marks.

- 1. State True or False. Justify your answer in brief:
 - (a) A point z_0 of a domain need not be an accumulation point of that domain.

$$(b) \qquad \lim_{z \to 0} \frac{\overline{z}^2}{z} = 0$$

- (c) The function $f(z) = e^z$ is periodic with period 2π .
- (d) $\log(-ei) = 1 \frac{\pi}{2}i$.
- (e) The function $f(z) = |z|^2$ is analytic at z = 0.
- (f) Let C denote the boundary of the triangle with vertices at the point 0, 3i, and -4, oriented in the counterclockwise direction. Then $\left| \int_{C} (e^{z} \overline{z}) dz \right| \le 60$.
- (g) If C is any simple closed contour, in either direction, then $\int_{C} \exp(z^{3}) dz = 0.$
- (h) If C is the positively oriented unit circle |z| = 1, then $\int_{C} \frac{\exp(2z)}{z^4} dz = \frac{8\pi i}{3}.$
- (i) $\operatorname{Res}_{z=0} f(z) = -\frac{1}{3!}$, where $f(z) = z^2 \sin\left(\frac{1}{z}\right)$, $0 < |z| < \infty$.
- (j) The function $f(z) = \frac{1}{\sin(\frac{\pi}{z})}$ has no isolated singular point.

- 2. (a) Prove that a finite set of points cannot have any accumulation point.
 - (b) Suppose that f(z) = u(x, y) + iv(x, y) (z = x + iy) and $z_0 = x_0 + iy_0$, $w_0 = u_0 + iv_0$. Then $\lim_{z \to z_0} f(z) = w_0$ if and only if $\lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0$ and $\lim_{(x,y) \to (x_0,y_0)} v(x,y) = v_0$.
 - (c) Define neighbourhood of the point at infinity. Show that a set S is unbounded if and only if every neighbourhood of the point at infinity contains at least one point in S.
- 3. (a) Use Cauchy-Riemann equations to show that f'(z) does not exist at any point if $f(z) = \exp(\overline{z})$. State sufficient conditions for differentiability of a function f(z) at any point $z_0 = x_0 + iy_0 \in \mathbb{C}$.
 - (b) Suppose that a function f(z) = u(x, y) + iv(x, y) and its conjugate $\overline{f(z)} = u(x, y) iv(x, y)$ are both analytic in a given domain D. Show that f(z) must be constant throughout D.

- (c) Explain why $f(x) = \sin(x)$ is a bounded function on R, whereas $f(z) = \sin(z)$ is not a bounded function on the complex plane C, although $\sin^2(z) + \cos^2(z) = 1$ for all $z \in C$.
- 4. (a) State and prove Cauchy Integral formula.
 - (b) State Liouville's theorem and use it to prove the fundamental theorem of algebra.
 - (c) Let C denote a contour of length L, and suppose that a function f(z) is piecewise continuous on C. Show that $\left| \int_C f(z) dz \right| \leq \text{ML}, \text{ where M is a non-negative constant}$ such that $|f(z)| \leq \text{M}$ for all points z on C at which $f(z) \quad \text{is defined. Hence, show that}$ $\left| \int_{C_R} \frac{2z^2 1}{z^4 + 5z^2 + 4} dz \right| \leq \frac{\pi R(2R^2 + 1)}{(R^2 1)(R^2 4)}, \text{ where } C_R$ denote the upper half of the circle |Z| = R(R > 2), taken in the counterclockwise direction.
- 5. (a) Derive the expansions:

(i)
$$\frac{\sinh z}{z^2} = \frac{1}{z} + \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+3)!} (0 < |z| < \infty);$$

(ii)
$$z^3 \cosh\left(\frac{1}{z}\right) = \frac{z}{2} + z^3 + \sum_{n=1}^{\infty} \frac{1}{(2n+2)!}$$

$$\frac{1}{z^{2n-1}} (0 < |z| < \infty)$$

- (b) Give all the Laurent series expansions in powers of z for the function $f(z) = \frac{-1}{(z-1)(z-2)}$ and specify the domains in which those expansions are valid.
- (c) If a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges when $z=z_1(z_1\neq z_0)$, then show that it is absolutely convergent at each point z in the open disk $|z-z_0|< R_1$ where $R_1=|z_1-z_0|$.
- (a) Show that the singular point of each of the following functions is a pole. Determine the order m of that pole and the corresponding residue B.

(i)
$$f(z) = \frac{z^2 - 2z + 3}{z - 2}$$

(ii)
$$f(z) = \frac{\sinh z}{z^4}$$

(iii)
$$f(z) = \frac{\exp(2z)}{(z-1)^2}$$
.

(b) Use residues to evaluate $\int_{0}^{2\pi} \frac{d\theta}{5 + 4 \sin \theta}$

(c) If a function f is analytic everywhere in the finite plane except for a finite number of singular points interior to a positively oriented simple closed contour C, then show that $\int_C f(z) dz = 2\pi i \operatorname{Res}_{z=0} \left[\frac{1}{z^2} f\left(\frac{1}{z}\right) \right]$. Use it to show that $\int_C \frac{5z-2}{z(z-1)} dz = 10\pi i$, where C is the circle |z| = 2, described counterclockwise.