10.12.18 (M)

This question paper contains 4 printed pages.

Your Roll No.

S. No. of Paper : 764

Unique Paper Code : 32227504

Name of the Paper : Nuclear and Particle Physics

Name of the Course : B.Sc. (H) Physics : DSE-2

Semester : V

Duration : 3 hours

Maximum Marks : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all. Question No. 1 is compulsory. Attempt any four questions from the remaining set of questions. Use of scientific calculator is permitted.

1. Attempt any five questions:

- (a) Calculate the Fermi energy, Fermi momentum and the well depth of a nucleus with N = Z = A/2.
- (b) What isospin value is expected from an even mass nuclide (Z, N)?
- (c) Why do unstable nuclei emit alpha particles and not protons or neutrons?
- (d) Define separation energy for neutrons.
- (e) Give the Lepton and Baryon numbers for electrons, protons, neutrons and positrons.
- (f) What is meant by the saturation of nuclear forces?

 $3 \times 5 = 15$

- 2
- 2. (a) Find the most stable isobar for A = 57 using the liquid drop model. Assume the constants as $a_1 = 14$ MeV, $a_2 = 13$ MeV, $a_3 = 0.59$ MeV, $a_4 = 19$ MeV, $a_5 = (\pm,0)$ 33.5 MeV where a_1 is the volume constant, a_2 is the surface energy constant, a_3 , a_4 , a_5 are respectively coulombic, asymmetric and pairing constants. Do not derive the semi-empirical mass formula.
 - (b) Thermal neutrons are captured by 10 B₅ to form 11 B₅ which decays by α -particle emission to 7_3 Li . Calculate:
 - (i) The Q value of the decay in MeV.
 - (ii) The kinetic energy of the α-particles in MeV.

8,7

- 3. (a) Determine the applied voltage required to operate a proportional counter with a maximum radial field of 10^6 Vm⁻¹. The radius of the wire and tube are respectively 0.003 cm and 1 cm.
 - (b) The alpha particles emitted in the decay of ²¹⁹₈₆Ru have energies 6.82 MeV, 6.55 MeV and 6.43 MeV. Determine the energies of gamma rays emitted by the daughter nuclei.
 - (c) Give three characteristics of nuclear forces. 5,5,5
- 4. (a) In an absorption experiment with 1.14 MeV γ radiation from $^{65}_{30}$ Zn, it is found that the intensity of radiation is reduced to 2% when it passes through 25 cm of aluminium. Determine the mass absorption coefficient of aluminium for this radiation. Density of aluminium is 2700 kg/m³ and M($^{26}_{13}$ Al) = 26.9815.

- (b) Calculate the binding energy per nucleon for ${}^{56}_{26}$ Fe and compare this with the value of the proton separation energy. Given $M({}^{56}_{26}$ Fe)=55.934939 u, $M({}^{55}_{25}$ Mn)=54.938046 u.
- (c) Find the height of the Coulomb barrier between an alpha particle and daughter nucleus ^A_ZD, assuming that the nuclear potential has a sharp edge at a radius of 1.4 A ^{1/3} fm. 5,5,5
- 5. (a) Using the quark model draw the Baryon octet. State the quantum number of all the particles in the octet.
 - (b) Give the principle of a linear accelerator.
 - (c) A cyclotron, in which the transverse magnetic flux density is 1.5 weber/m², is used to accelerate protons. Determine the frequency of the source. 7,4,4
- 6. (a) What are the advantages of a GM counter over the ionization chamber for radiation detection?
 - (b) Give *two* differences between direct and compound nuclear reactions.
 - (c) Indicate giving reasons if the following reactions proceed through the weak, strong or electromagnetic interactions or they do not occur:
 - (i) $\pi^0 \rightarrow \gamma + \gamma$

(iii)
$$e^+ + e^- \rightarrow \mu^+ + \mu^-$$

5,5,5

P. T. O.

- 7. (a) What is Cerenkov radiation? Calculate the threshold velocity for electrons to produce this radiation when it travels through a medium of refractive index 1.6.
- (b) Alpha particles and deuterons are accelerated under identical conditions in a cyclotron. The extracted beam of these particles is passed through an absorber. What is the ratio of the range of alpha particle to the range of the deuteron?
 - (c) Using the uncertainty principle, estimate the energy required for a proton to be a part of the nucleus.

5,5,5

USEFUL DATA:

 $M(_{5}^{11}B) = 11.0119305 \text{ u}; M(_{1}^{1}H)=1.007825 \text{ u}; \text{ Mass of a neutron}=1.008665 \text{ u}; M(_{3}^{7}Li) = 7.016004 \text{ u}; M(_{2}^{4}He) = 4.002603 \text{ u}.$