
12.12.18(M)

Your Roll No.....

Sr. No. of Question Paper: 453

Unique Paper Code : 42227530

Name of the Paper : Digital Analog and

Instrumentation

Name of the Course : B.Sc. (Prog.): DSE - 3A

Semester : \

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

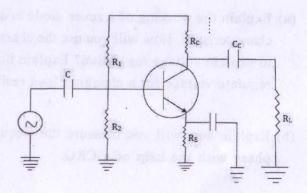
- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt **five** questions in all including Question No. 1, which is compulsory.
- 1. Attempt any **five** of the following. Each question carries equal marks. (3×5=15)
 - (a) Convert the decimal no 23 into a binary and find the 2's complement of the binary number so obtained.
 - (b) Draw the logic circuit for X-NOR gate and write its truth table and boolean expression.

12.12/3(M

- (c) Explain construction and working of an LED.
- (d) Draw input and output characteristics of a common base transistor configuration.
- (e) Draw the pin out diagram of a 555 timer IC.
- (f) What is Peak Inverse Voltage (PIV)? Determine its value for a center- tapped full wave rectifier.
- (g) Implement the basic gates viz- AND, OR & NOT, using any of the universal gates.
- 2. (a) Using K-map simplify the following logic function.

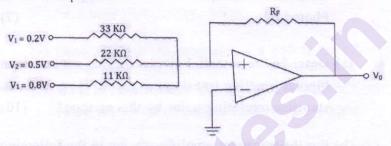
$$Y=F(A,B,C,D)=\sum m(1,2,3,6,8,9,10)+\sum d(12,13,14)$$

Implement the final boolean expression in a logic circuit and write the truth table. (10)


- (b) Simplify the following expressions using boolean algebra techniques.
 - (i) Y=ABC'D'+A'BC'D'+A'BCD'+ABCD'

(ii)
$$Y = AB + A(B+C) + B(B+C)$$
 (5)

3. (a) Write truth table for a full subtractor and derive its
Boolean expression using SOP method. Draw a
logic circuit diagram for the same. (8)


- (b) Explain construction and working of a Photodiode with the help of a neat diagram. Draw the characteristics also. Give one application of Photodiode. (7)
- 4. (a) Describe the potential divider biasing method for a bipolar junction transistor in detail. How will you stabilize operating point by this method? (10)
 - (b) For the transistor amplifier shown in the following figure
 - (i) Draw de load line
 - (ii) Determine operating point.

Given
$$R_1 = 10K\Omega$$
, $R_2 = 5K\Omega$, $R_c = 1K\Omega$, $R_E = 2K\Omega$
and $R_L = 1K\Omega$ (5)

5. (a) Explain the working of an inverting and non inverting op-amp. and obtain an expression for voltage gain. (10)

(b) Calculate the output voltage of the circuit for $R_{\varepsilon} = 68 \text{ K}\Omega$. (5)

- 6. (a) Using h-parameter for CE amplifier obtain an expression for input impedance, output impedance, current gain and voltage gain. (10)
 - (b) Explain Barkhauson's criterion for sustained oscillations. (5)
- 7. (a) Explain the working of a zener diode and draw its characteristics. How will you use the characteristics to explain voltage regulation? Explain how will it regulate voltage for a changing load resistance.

(10)

(b) Explain how will you measure the frequency and phase with the help of a CRO. (5)