[This question paper contains 8 printed pages.] 4/2/18 M

Your Roll No.....

Sr. No. of Question Paper: 339

IC

Unique Paper Code

: 42177925

Name of the Paper

Chemistry of d Block Elements,

Quantum Chemistry and

Spectroscopy

Name of the Course

B.Sc. (Prog) Chemistry:

DSE - IA

Semester

V

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any three questions from Section A and any three from Section B.
- 3. Section A and B are to be attempted separately in the same sheet.
- 4. Calculators and log tables may be used.

Section A

Attempt any three questions.

1. (a) Give brief reasons for any five of the following:

- (i) Transition metals usually show variable oxidation states.
- (ii) CuSO₄.5 H₂O is coloured but anhydrous CuSO₄is colourless.
- (iii) Densities of third transition series elements are almost double the respective elements of second transition series.
- (iv) Transition metals form interstitial compounds.
- (v) Many transition metals and their compounds act as catalyst.
- (vi) The radii of first transition series elements decrease from left to right but the decrease is not as prominent as in s & p block elements. (10)
- (b) Complexes with empirical formula CoBr(NH₃)₅SO₄ exist in two isomeric forms A & B. Form A yields one mole of BaSO₄ when treated with a solution of BaCl₂ whereas form B yields one mole of AgBr when treated with a solution of AgNO₃. Write down the structural formulae of both the forms. What are these isomers called? (2½)

- 2. (a) Give the IUPAC names of any three of the following complexes:
 - (i) [Cr(NH₃)₆] [Cu(CN)₅]
 - (ii) Na [Mn(CO)₅]
 - (iii) [Cr CO₃(NH₃)₅] NO₃
 - (iv) $[(en)_2Co(NH)(OH)Co(en)_2]$ Cl₃ (4½)
 - (b) Calculate CFSE in terms of Δ_t of a d⁶ metal ion placed in a tetrahedral field. Draw the splitting diagram. (4)
 - (c) State Jahn Teller theorem. Giving suitable reason, explain which of the following complexes will be distorted:

$$[Fe(H_2O)_6]^{3+}$$
 or $[Cr(H_2O)_6]^{2+}$ (4)

3. (a) The complex [Co(en)₂Cl₂] exists in two isomeric forms A & B. A is optically active but B is not. Explain the reason briefly and draw the structures of A & B. (4½)

- (b) Write the formulae of any two of the following:
 - (i) Potassium carbonylpentacyanidoferrate (II)
 - (ii) μ-amido-μ- superoxidotetrakis(ethylene diamine)dicobalt(III) nitrate
 - (iii) Caesium tetrafluoridooxidochromate (III)
 (4)
- (c) Which will show greater value of Δ_0 and why?
 - (i) $[Co(NH_3)_6]^{3+}$ or $[Co(H_2O)_6]^{3+}$
 - (ii) $[Fe(H_2O)_6]^{2+}$ or $[Fe(H_2O)_6]^{3+}$ (4)
- 4. (a) For Mn³⁺ion, the electron pairing energy is 336 KJ mole⁻¹. The crystal field splitting energy for [Mn (H₂O)₆]³⁺ ion is 250 KJ mole⁻¹. Will the complex ion have a high spin or a low spin configuration? Calculate CFSE for both the configurations to justify your answer. (4½)
 - (b) [Ni (CO)₄] has tetrahedral geometry but [Ni (CN)₄]²⁻ is square planer. Explain with the help of VBT. (4)

(c) Given below is the latimer diagram for Fe in acidic medium:

Fe
$$O_4^{2-}$$
 2.20 Fe³⁺ 0.77 Fe²⁺ -0.47 Fe

Answer the following questions:

- (i) Is there any state which undergoes disproportionation? Explain.
- (ii) Calculate skip step emf for Fe³⁺ ----- Fe change
- (iii) Is there any tendency of Fe²⁺ to reduce to Fe? Give reason for your answer.

OR

Write short notes on any two of the following:

- (i) Separation of lanthanides by ion exchange method
- (ii) Inner and outer orbital complexes
- (iii) Geometrical isomerism in square planer complexes (4)

Section B

Physical constants Planck's constant, $h = 6.626 \times 10^{-34} Js$ Boltzmann Constant, $k = 1.38 \times 10^{-23} JK^{-1}$ Mass of electron, $m_e = 9.31 \times 10^{-31} kg$ Velocity of light, $c = 3 \times 10^8$ m s⁻¹

Attempt three questions.

- 1. (a) Is the function $e^{\frac{x^2}{2}}$ an eigen function of the operator $\frac{d^2}{dx^2}$? Give reason.
 - (b) Define Lambert Beer's Law. What are its limitations? Give one application of this law.
 - (c) The wave number of J=2 rotational state of 1_H35_{Cl} is 120 cm⁻¹. Calculate moment of inertia and the bond length of the molecule.
 - (d) Phosphorescence is a slow phenomenon. Explain. (3,3,4,2.5)
- 2. (a) Normalize the function $\psi = x(a-x)$ over the interval $0 \le x \le a$.
 - (b) What is Stark Einstein law of photochemical equivalence? What are the reasons for breakdown of this law?

- (c) The absorption band in IR spectrum of $12_{\rm c}16_{\rm O}$ is at 2150 cm⁻¹. Calculate the force constant of CO bond and the zero-point energy of the molecule.
- (d) At room temperature several rotational levels are populated but only the lowest vibrational level is populated. Explain. (3,3,4,2.5)
- 3. (a) Calculate the transmittance, absorbance and molar extinction coefficient of a solution which absorbs 80% of light of wavelength 250 nm passed through a cell of path length 1cm containing a solution of concentration 0.25 M.
 - (b) Explain the terms inter system crossover, internal conversion and primary process.
 - (c) Calculate the energy required for excitation of π electron in Butadiene using free electron model. Average C-C bond length is 140 pm.
 - (d) IR signal for stretching of C-C bond is at a lower frequency than for C=C bond. Explain. (3,3,4,2.5)
 - 4. (a) What is Bohr's Principle of Correspondence?

 Explain it taking example of particle in a box.

- (b) What is the essential condition for a molecule to show IR spectrum? Will CO₂ show a spectrum in IR? Give reason.
- (c) In photochemical synthesis of HBr, the quantum efficiency was found to be 0.2 with light of wavelength 280nm. How many moles of HBr will be produced per Joule of energy absorbed?
- (d) Rotational spectra are observed in microwave region but vibrational spectra are observed in IR region of electromagnetic radiation. Explain.

(3,3,4,2.5)