4/12/18 (M) (B)

[This question paper contains 4 printed pages]

Your Roll No. :....

Sl. No. of Q. Paper : 618

Unique Paper Code : 32227502

Name of the Course : B.Sc.(Hons.)

Physics : DSE - I

Name of the Paper : Advanced Mathematical

Physics

Semester : V

Time: 3 Hours Maximum Marks: 75

Instructions for Candidates:

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) Attempt any five questions in all taking at least two questions from each section.
- (c) All questions carry equal marks.
- (d) Attend all parts of each question together.

Section - A

(a) Determine whether the identity element exist or not for the binary operation * defined as: a * b = a^b

- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x+y-2z, x+2y+z, 2x+2y-3z). Show that T is a non-singular transformation.
- (c) Linear transformation T on R^2 is defined as: T(x, y) = (3x - 4y, x + 5y) 6 Find the matrix representation of T relative to the u-basis:

 $\{u_1 = (1, 3) \text{ and } u_2 = (2, 5)\}.$

- 2. (a) Determine whether (1, 2, 5); (2, 5, 1); (1, 5, 2) are linearly dependent or not.
 - (b) Consider the following subspace of R⁴:
 W = {(a, b, c, d): a + b = 0, c = 2 d}
 Find the dimension and basis of W.
 - (c) Assume that A, I A, $I A^{-1}$ are all non-singular matrices, show that: $(I A)^{-1} + (I A^{-1})^{-1} = I.$
- 3. (a) Given a matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, prove that its eigenvalue equation is given by

 $\lambda^2 - \lambda \operatorname{Tr}(A) + \det(A) = 0.$

(b) If $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, prove that :

 $e^{\theta B} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}.$ 10

4. (a) Find the condition for the following matrix to be orthogonal:

 $\begin{bmatrix} a+b & b-a \\ a-b & a+b \end{bmatrix}$

(b) Evaluate C^{20} , where $C = \begin{bmatrix} -1 & 3 \\ 1 & 1 \end{bmatrix}$.

Section - B

- 5. (a) Show that every second order tensor can be expressed as a sum of symmetric and skew-symmetric tensor.
 - (b) Prove that $(\vec{A} \times \vec{B}) \times \vec{C} = \vec{B}(\vec{A} \cdot \vec{C}) \vec{A}(\vec{B} \cdot \vec{C})$, using tensors.
 - (c) Given a vector $\vec{A} = (x, x + y, x + y + z)$.

Find the matrix elements of the second order skew-symmetric tensor associated with it. 5

- (a) Prove that ∈_{ijk} is an isotropic tensor of order three.
 - (b) Prove that:

$$\vec{\nabla} \cdot (\vec{A} \times \vec{B}) = (\vec{\nabla} \times \vec{A}) \cdot \vec{B} - (\vec{\nabla} \times \vec{B}) \cdot \vec{A}$$
 7

- (c) Using tensors, show that scalar product of two vectors is invariant.
- 7. (a) Stress tensor (p_{ij}) satisfies the equations $p_{ij} \in_{ijk} = 0$ and $p_{ij} = f_i n_j$, where f_k is the restoring force per unit area across the plane along x_k -axis and \hat{n} is the unit vector normal to that surface. Prove that stress tensor is a symmetric tensor of order two.
 - (b) Stress tensor and strain tensor are related as

 $p_{ij} = \omega_{ijks} e_{ks}$

where, elastic tensor ω_{ijks} is symmetric in i, j and k, s and its general form is $\omega_{ijks} = \lambda \delta_{ij} \delta_{ks} + \mu \delta_{ik} \delta_{is} + \gamma \delta_{is} \delta_{ik}$.

Prove that:

$$(i) \quad \omega_{ijks} = \lambda \delta_{ij} \delta_{ks} + \mu \Big(\delta_{ik} \delta_{js} + \gamma_{is} \delta_{jk} \Big)$$

(ii)
$$P_{ii} = (3\lambda + 2\mu)e_{ii}$$
 4,4

- (a) A covariant tensor has components xy, 2y z², xz in cartesian co-ordinates. Find its covariant components in cylindrical co-ordinates.
 - (b) Prove that g jk is a symmetric contravariant tensor of order two.